AGI大模型与大数据研究院
著有《AI大模型应用入门实战与进阶》(写作中)《ClickHouse入门实战与进阶》《Kotlin 极简教程》《Spring Boot开发实战》《Kotlin从入门到进阶实战》等技术书籍。资深程序员、大数据与后端技术专家、架构师,拥有超过10年的技术研发和管理经验。现就职于字节跳动,曾就职于阿里巴巴,主要从事企业智能数字化经营管理、电商智能数字化运营等系统架构设计和研发工作。在大数据和企业级系统架构领域有非常深厚的积累,擅长大数据系统架构和分布式系统架构设计开发。热衷于新技术的学习和技术分享。
展开
-
Token与时空碎片的技术对比
Token, 时空碎片, 自然语言处理, 深度学习, 计算机视觉, 数据结构, 算法设计, 效率优化1. 背景介绍在当今数据爆炸的时代,信息处理和理解能力成为人工智能发展的重要驱动力。Token,作为一种基本的文本处理单元,在自然语言处理 (NLP) 领域扮演着至关重要的角色。而原创 2024-11-02 01:34:06 · 319 阅读 · 0 评论 -
阿克莱特的纺织机械创新
阿克莱特,纺织机械,人工智能,机器学习,深度学习,算法优化,数据结构,软件架构,创新1. 背景介绍在工业革命的浪潮中,纺织业作为重要的支柱产业,经历了从手工制作到机械化生产的巨大变革。阿克莱特,这位伟大的发明家,凭借其对纺织机械的深刻理解和对技术的不断探索,创造了无数改变世界的重原创 2024-11-02 01:29:27 · 385 阅读 · 0 评论 -
Token与时空碎片的对比
Token, 时空碎片, 自然语言处理, 深度学习, Transformer, 知识图谱, 计算机视觉1. 背景介绍在当今数据爆炸的时代,信息处理和理解能力成为人工智能领域的核心挑战。自然语言处理 (NLP) 和计算机视觉 (CV) 作为人工智能的两大支柱,在处理文本和图像数据方原创 2024-11-02 01:33:35 · 189 阅读 · 0 评论 -
高楼万丈平地起:语言模型的雏形NGram和简单文本表示BagofWords
N-Gram, Bag-of-Words, 语言模型, 文本表示, 自然语言处理, 机器学习1. 背景介绍在信息爆炸的时代,海量文本数据无处不在。如何有效地理解、分析和利用这些文本数据成为了一个重要的研究课题。自然语言处理(NLP)作为人工智能的重要分支,致力于使计算机能够理解、原创 2024-11-02 01:29:58 · 172 阅读 · 0 评论 -
软件2.0:放弃编写代码,转向训练数据集
软件2.0, 数据驱动, 机器学习, 深度学习, 代码生成, 自动化开发, 数据集训练1. 背景介绍软件开发行业经历了数十年飞速发展,从最初的低级语言到如今的云原生架构,我们见证了技术的不断进步。然而,软件开发的核心问题依然存在:代码编写仍然是耗时、费力且容易出错的环节。随着人工原创 2024-11-02 01:31:00 · 301 阅读 · 0 评论 -
Transformer大模型实战 BERT 的配置
Transformer, BERT, 自然语言处理, 预训练模型, 序列标注, 文本分类, 语言理解1. 背景介绍近年来,深度学习在自然语言处理 (NLP) 领域取得了显著进展,其中 Transformer 架构和基于 Transformer 的预训练语言模型 (PLM) 成为原创 2024-11-02 01:35:08 · 319 阅读 · 0 评论 -
连接主义与行为主义的生命力
人工智能(AI)的蓬勃发展,为我们带来了前所未有的机遇和挑战。从语音识别到图像识别,从自动驾驶到医疗诊断,AI正在深刻地改变着我们的生活。在这场AI革命中,连接主义和行为主义扮演着至关重要的角色。连接主义,源于生物神经网络的启发,试图通过模拟大脑的结构和功能来构建智能系统。它强调网络结构和连接权重的学习,认为学习的过程是权重调整的过程。行为主义,则关注的是观察和实验,通过奖励和惩罚来塑造行为。它强调环境与行为之间的互动,认为学习是通过对环境的反馈来调整行为的过程。原创 2024-11-02 01:30:29 · 97 阅读 · 0 评论 -
Transformer大模型实战 计算句子的相似度
Transformer, 大模型, 计算相似度, 自然语言处理, 文本分析, BERT, Sentence-BERT1. 背景介绍在当今数据爆炸的时代,文本数据已成为重要的信息资源。如何有效地理解和分析文本信息,是自然语言处理 (NLP) 领域的核心问题之一。计算句子相似度是文本原创 2024-11-02 01:34:37 · 63 阅读 · 0 评论 -
需求分析项目管理系统规划能力核心培养
需求分析、项目管理、系统规划、软件开发、敏捷开发、迭代开发、风险管理、团队协作1. 背景介绍在当今科技日新月异的时代,软件开发已成为推动社会进步的重要引擎。然而,优秀的软件开发不仅仅依赖于技术能力,更需要具备扎实的需求分析、项目管理和系统规划能力。这些能力是软件开发项目的成功关键原创 2024-11-02 01:31:31 · 84 阅读 · 0 评论 -
预训练与微调的实战策略
预训练模型,微调,自然语言处理,计算机视觉,深度学习,迁移学习,模型压缩1. 背景介绍深度学习的蓬勃发展,为人工智能领域带来了革命性的变革。其中,预训练模型和微调策略作为深度学习的重要组成部分,在自然语言处理、计算机视觉等领域取得了显著的成果。预训练模型是指在大量未标记数据上进行原创 2024-11-02 01:32:02 · 85 阅读 · 0 评论 -
Transformer的适应性:8年主导地位的秘密
Transformer, 自注意力机制, BERT, GPT, NLP, 自然语言处理, 深度学习, 机器学习1. 背景介绍自2017年以来,Transformer模型凭借其强大的性能和广泛的应用场景,在自然语言处理(NLP)领域迅速崛起,成为主流模型架构。其核心在于自注意力机制原创 2024-11-02 01:35:39 · 76 阅读 · 0 评论 -
ZeroShot Learning原理与代码实例讲解
在机器学习领域,模型通常需要在特定任务上进行大量标注数据的训练才能达到良好的性能。然而,获取大量标注数据的成本高昂且耗时,这限制了机器学习模型在许多新兴领域中的应用。Zero-Shot Learning (ZSL) 作为一种突破性技术,旨在解决这一难题。ZSL 允许模型在从未见过样本的任务上进行预测,即模型可以学习到对新类别概念的理解,并将其应用于从未见过的类别。ZSL 的核心思想是通过学习一个通用的语义表示来实现对新类别的泛化能力。模型可以学习到不同类别的语义特征,并利用这些特征来预测新类别的标签。原创 2024-11-02 01:36:10 · 65 阅读 · 0 评论 -
长久生意之道:理解客户需求
客户需求,产品设计,市场调研,用户体验,商业模式,敏捷开发,持续迭代1. 背景介绍在瞬息万变的科技时代,企业要想立于不败之地,必须紧跟市场步伐,不断满足客户不断变化的需求。然而,理解客户需求并非易事,它需要企业深入了解客户的痛点、需求和期望,并将其转化为切实可行的产品和服务。原创 2024-11-02 01:32:33 · 204 阅读 · 0 评论 -
高端制造业的AI创新体系建设
AI、高端制造、创新体系、机器学习、深度学习、数据驱动、智能制造、工业互联网1. 背景介绍高端制造业是国家经济发展的重要支柱,其核心竞争力在于产品的高精度、高性能、高可靠性和个性化定制能力。然而,传统制造业面临着劳动力成本上升、生产效率低下、产品质量难以保证等挑战。人工智能(AI原创 2024-11-02 01:28:56 · 183 阅读 · 0 评论 -
语言与推理:大模型的认知误区
大语言模型,认知误区,推理能力,逻辑错误,知识图谱,因果关系,可解释性1. 背景介绍近年来,大语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就。从文本生成、翻译到问答和代码编写,LLM展现出强大的能力,甚至被认为具有某种程度的“智能”。然而,尽管LLM取得了如此巨大的进步原创 2024-11-01 00:30:44 · 11 阅读 · 0 评论 -
语言与思维的差异:大模型的困境
大模型、语言模型、思维、认知、人工智能、深度学习、自然语言处理1. 背景介绍近年来,深度学习技术取得了飞速发展,特别是大规模语言模型(Large Language Model,LLM)的出现,为人工智能领域带来了革命性的变革。这些模型,例如GPT-3、LaMDA和BERT,展现出原创 2024-11-01 00:30:13 · 9 阅读 · 0 评论 -
语言≠思维:大模型的认知挑战
大语言模型、认知科学、人工智能、自然语言处理、深度学习、迁移学习、通用人工智能1. 背景介绍近年来,大语言模型(Large Language Models,LLMs)在自然语言处理(Natural Language Processing,NLP)领域取得了令人瞩目的成就。从文本生原创 2024-11-01 00:29:42 · 9 阅读 · 0 评论 -
软件2.0的文档自动生成技术
文档自动生成, 软件2.0, 代码注释, 自然语言处理, 深度学习, 知识图谱, 软件开发流程1. 背景介绍随着软件开发的日益复杂化和迭代速度的加快,文档的生成和维护成为了一个巨大的挑战。传统的文档编写方式依赖于人工撰写,耗时费力,且难以保证文档的准确性和一致性。随着人工智能技术原创 2024-11-01 00:29:11 · 11 阅读 · 0 评论 -
软件 2.0 的哲学思考:人工智能的本质
人工智能,软件 2.0,深度学习,机器学习,自然语言处理,计算机视觉,哲学思考1. 背景介绍软件已经深刻地改变了我们的生活,从智能手机到云计算,从自动驾驶到医疗诊断,软件无处不在。然而,我们所熟知的软件,本质上是基于人类逻辑和指令编写的静态程序。随着人工智能技术的飞速发展,我们正原创 2024-11-01 00:28:40 · 11 阅读 · 0 评论 -
软件 2.0 的应用:从实验室走向现实
软件 2.0, 自适应系统, 机器学习, 深度学习, 自然语言处理, 人机交互, 认知计算, 智慧城市1. 背景介绍软件已经深刻地改变了我们的生活,从智能手机到云计算,从社交网络到自动驾驶,软件无处不在。然而,传统的软件开发模式面临着越来越多的挑战。随着技术的不断发展,人们对软件原创 2024-11-01 00:28:09 · 9 阅读 · 0 评论 -
软件 2.0 的伦理规范:人工智能的责任
人工智能,伦理规范,责任,软件 2.0,可解释性,公平性,透明度,安全1. 背景介绍软件已经深刻地改变了我们的生活,从智能手机到自动驾驶汽车,软件无处不在。随着人工智能(AI)技术的飞速发展,软件正在进入一个新的时代——软件 2.0。软件 2.0 具有自主学习、适应环境和解决复杂原创 2024-11-01 00:27:07 · 6 阅读 · 0 评论 -
软件 2.0 的发展趋势:深度学习强化学习
深度学习、强化学习、软件 2.0、人工智能、机器学习、自动驾驶、机器人1. 背景介绍软件行业正处于一个前所未有的变革时期。传统的软件开发模式,依赖于人类程序员手动编写代码,效率低下,难以应对复杂系统的需求。而人工智能(AI)技术的快速发展,为软件行业带来了新的机遇和挑战。深度学习原创 2024-11-01 00:26:36 · 4 阅读 · 0 评论 -
软件 2.0 的时代:数据驱动一切
数据驱动,软件 2.0,人工智能,机器学习,深度学习,数据分析,云计算,大数据1. 背景介绍软件行业正处于一个前所未有的变革时期。传统的软件开发模式,以人为中心,依赖于静态的代码和固定的规则,难以适应日益复杂和动态变化的业务需求。随着大数据、人工智能和云计算技术的蓬勃发展,软件行原创 2024-11-01 00:27:38 · 3 阅读 · 0 评论 -
认知的形式化:数学能够研究解释无限的世界,并可以利用无限研究有限
数学形式化、认知科学、人工智能、无限、有限、算法、模型、应用1. 背景介绍认知科学作为一门跨学科研究人类认知的科学,试图揭示人类思维、学习、记忆、语言等复杂行为背后的机制。而数学,作为一种精确的逻辑语言,为认知科学提供了强大的工具和框架。近年来,随着人工智能技术的原创 2024-11-01 00:25:34 · 7 阅读 · 0 评论 -
认知过程中的简单与复杂演变
认知过程、复杂系统、简单性原理、演化算法、人工智能、深度学习1. 背景介绍认知过程是人类理解世界、解决问题和做出决策的核心机制。从简单的感知到复杂的推理,认知过程展现出惊人的复杂性。然而,在复杂性背后,隐藏着简单性的原理,这些原理驱动着认知过程的演化和发展。近年来原创 2024-11-01 00:26:05 · 10 阅读 · 0 评论 -
认知的形式化:数学和物理规律为我们提供了理解自然现象的钥匙
认知科学,形式化,数学模型,物理规律,自然现象,人工智能,深度学习1. 背景介绍认知科学作为一门跨学科研究人类认知过程的科学,旨在揭示我们如何感知、思考、学习和决策。然而,认知过程的复杂性和多层次性使得其研究面临着巨大的挑战。传统认知科学研究主要依赖于观察、实验和心理测量等方法,原创 2024-11-01 00:25:02 · 8 阅读 · 0 评论 -
认知的形式化:时间是度量从有序走向无序的熵增过程
认知、形式化、时间、熵、无序、有序、信息论、人工智能1. 背景介绍在信息爆炸的时代,人类对认知的理解和模拟日益深入。从早期的人工智能研究到如今的深度学习,我们一直在探索如何将人类的思维方式转化为计算机可理解的形式。然而,认知的本质究竟是什么?它如何与时间、信息和能量相互关联?这些原创 2024-11-01 00:24:32 · 9 阅读 · 0 评论 -
超参数调优与模型选择原理与代码实战案例讲解
超参数调优, 模型选择, 机器学习, 深度学习, 梯度下降, 交叉验证, 网格搜索, 随机搜索, 贝叶斯优化1. 背景介绍在机器学习和深度学习领域,模型的性能很大程度上取决于超参数的设置。超参数是模型训练过程中需要预先设置的参数,它们不直接由训练数据学习,而是由人类专家根据经验和原创 2024-11-01 00:24:01 · 5 阅读 · 0 评论 -
软件 2.0 的未来展望:更智能更强大
软件 2.0, 人工智能, 机器学习, 深度学习, 自动化, 代码生成, 持续交付, 云计算, 敏捷开发1. 背景介绍软件已经深刻地改变了我们的生活,从智能手机到云计算,从社交媒体到自动驾驶,软件无处不在。然而,传统的软件开发模式面临着越来越多的挑战:原创 2024-11-01 00:23:30 · 111 阅读 · 0 评论 -
虚拟筛选技术在药物发现中的应用进展
虚拟筛选、药物发现、计算机辅助药物设计、分子模拟、机器学习1. 背景介绍药物发现是一个漫长而复杂的流程,从候选药物的识别到临床试验,通常需要花费十年时间和数十亿美元的投资。传统药物发现方法依赖于大量的实验筛选,效率低下且成本高昂。近年来,随着计算机技术和生物信息学的发展,虚拟筛选原创 2024-10-31 11:26:46 · 19 阅读 · 0 评论 -
线性代数导引:线性运算
线性代数,线性运算,矩阵,向量,线性变换,特征值,特征向量,应用场景,Python1. 背景介绍线性代数作为数学领域的重要分支,为计算机科学、数据科学、人工智能等领域提供了强大的理论基础和工具。它以向量、矩阵和线性变换为核心概念,为解决各种复杂问题提供了简洁高效的表达和计算方法。原创 2024-10-31 11:26:15 · 10 阅读 · 0 评论 -
线性代数导引:递归定义定理
线性代数,递归定义,定理证明,矩阵运算,算法设计,数据结构1. 背景介绍线性代数作为数学领域的重要分支,为计算机科学、数据科学、人工智能等领域提供了强大的理论基础和工具。其中,递归定义是线性代数中一种重要的概念,它能够简洁地描述许多复杂的数学对象和运算。本文将深入探讨递归定义在线原创 2024-10-31 11:25:44 · 30 阅读 · 0 评论 -
算法算力与大数据:AI的三驾马车
算法、算力、大数据、人工智能、机器学习、深度学习、模型训练、数据分析、应用场景1. 背景介绍人工智能(AI)近年来发展迅速,已成为引领科技发展的重要力量。从自动驾驶到语音识别,从医疗诊断到金融风险控制,AI技术正在深刻地改变着我们的生活和工作方式。然而,AI的发展并非一蹴而就,它原创 2024-10-31 11:25:13 · 28 阅读 · 0 评论 -
神经网络:探索未知的领域
神经网络,深度学习,机器学习,人工智能,卷积神经网络,循环神经网络,自然语言处理,计算机视觉1. 背景介绍人工智能(AI)作为科技发展的重要方向,近年来取得了令人瞩目的进展。其中,神经网络作为AI的核心技术之一,在图像识别、自然语言处理、语音识别等领域展现出强大的应用潜力。原创 2024-10-31 11:24:41 · 6 阅读 · 0 评论 -
神经网络:改变世界的技术
神经网络,深度学习,机器学习,人工智能,卷积神经网络,循环神经网络,自然语言处理,计算机视觉1. 背景介绍人工智能(AI)正以惊人的速度发展,深刻地改变着我们生活的方方面面。其中,神经网络作为人工智能的核心技术之一,在过去几年取得了突破性的进展,并在图像识别、自然语言处理、语音识原创 2024-10-31 11:24:10 · 7 阅读 · 0 评论 -
联邦学习 (Federated Learning) 原理与代码实例讲解
联邦学习、模型训练、数据隐私、分布式学习、机器学习1. 背景介绍在当今数据驱动时代,机器学习模型的训练离不开海量数据。然而,数据往往分散在不同的机构或设备上,例如医疗机构、金融机构、智能手机等。直接将这些数据集中到一个中心服务器进行训练,会引发严重的隐私泄露和数据安全问题。原创 2024-10-31 11:22:37 · 5 阅读 · 0 评论 -
认知发展的阶段性路径模型
认知发展、阶段性模型、人工智能、机器学习、深度学习、神经网络、知识图谱、推理、决策1. 背景介绍认知发展是人工智能领域的核心议题之一。从早期基于规则的专家系统到如今的深度学习模型,人工智能的发展历程始终伴随着对认知能力的探索和模拟。然而,人类的认知能力是极其复杂的,它涉及感知、记原创 2024-10-31 11:23:08 · 6 阅读 · 0 评论 -
荣格:理解自身的黑暗面,是应对他人黑暗面的最好方法
人工智能,深度学习,偏见,公平性,伦理,算法,荣格心理学1. 背景介绍在人工智能(AI)蓬勃发展的时代,我们见证了机器学习算法的惊人进步,它们在图像识别、自然语言处理、医疗诊断等领域取得了突破性的成就。然而,随着AI技术的日益普及,我们也开始意识到其潜在的风险和挑战。其中,算法偏原创 2024-10-31 11:23:39 · 6 阅读 · 0 评论 -
科学探究:从假说到真理
科学探究, 假说, 实验验证, 逻辑推理, 知识构建, 算法, 数学模型, 代码实现, 应用场景, 未来趋势1. 背景介绍在瞬息万变的科技时代,科学探究扮演着至关重要的角色。从最初的朴素观察到如今的复杂实验,人类不断探索着世界的奥秘,并通过逻辑推理和知识构建,逐步揭示着自然规律。原创 2024-10-31 11:22:06 · 7 阅读 · 0 评论 -
科学方法:从观察到实验
科学方法,观察,实验,数据分析,模型构建,算法设计,代码实现,应用场景,未来趋势1. 背景介绍在瞬息万变的科技时代,创新和进步离不开科学方法的指导。科学方法是一种严谨的思维模式,它通过观察、假设、实验和分析,不断探索和验证知识,推动人类对世界和自身的理解不断深入。原创 2024-10-31 11:21:34 · 7 阅读 · 0 评论