题目描述
小蓝有一张
n
n
n 行
m
m
m 列的方格纸,她从这张纸上剪下了一些图案。
小灰灰拿到了小蓝剪下图案之后的残缺纸张,他知道小蓝有强迫症,不会使得两个剪下的图案相连通,而且剪纸时
不会剪破任何一个完整的小方格,所以可以通过残缺纸张复原出小蓝剪下的图案。
现在小灰灰想知道,在小蓝剪下的图案中有多少个长方形 (正方形可以看作是特殊的长方形)。
输入描述:
输入第一行包含两个空格分隔的整数分别代表
n
n
n 和
m
m
m。
接下来输入
n
n
n 行,每行包含
m
m
m 个字符,代表残缺纸张。保证:
1
≤
n
,
m
≤
1000
1\leq n,m\leq1000
1≤n,m≤1000
字符仅有··和·+·两种字符,其中··代表被剪去的部分,·\star·代表未被剪去的部分。
输出描述:
输出一行一个整数,代表答案。
示例1:
输入:
4 10
*.*.*...**
...***.*..
.**..*.*..
*..*****..
输出:
4
分析:
要判断有几个长方形可以dfs遍历可以走的点,判断这个连通块是不是一个长方形,而怎么判断长方形是本题最难的点,下面是一种方法,可以求出该连通块的最大和最小的x,y坐标,长度相乘,如果等于这里面连通块中可以走的数量,那么就说明这是一个长方形。
完整代码如下:
#include<iostream>
#include<cstring>
using namespace std;
#define ios ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
const int N = 1010;
string s[N];
bool vis[N][N];
int dx[4] = {-1, 1, 0, 0}, dy[4] = {0, 0, -1, 1};
int mx, mn, mx1, mn1;
int cnt, res;
int n,m;
void dfs(int x, int y, int n, int m) {
if(x < 1 || x > n || y < 1 || y > m || s[x][y] != '.' || vis[x][y]) return;
vis[x][y] = true;
mx = max(x, mx), mn = min(x, mn);
mx1 = max(y, mx1), mn1 = min(y, mn1);
cnt++;
for(int i = 0; i < 4; i++) {
dfs(x + dx[i], y + dy[i], n, m);
}
}
int main() {
ios;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
cin >> s[i];
s[i] = " " + s[i]; // Ensure that we start indexing from 1
}
memset(vis, 0, sizeof(vis));
res = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(s[i][j] == '.' && !vis[i][j]) {
mx = mn = i;
mx1 = mn1 = j;
cnt = 0;
dfs(i, j, n, m);
if(cnt == (mx - mn + 1) * (mx1 - mn1 + 1)) res++;
}
}
}
cout << res << endl;
return 0;
}