HNUCM-OJ春季学期《算法分析与设计》练习13题解

}

// 将集合合并

void union_set(int x,int y){

x=find_set(x);

y=find_set(y);

if(x==y)

return ;

res–;

if(rnk[x]>rnk[y]){

pa[y]=x;

}

else{

pa[x]=y;

if(rnk[x]==rnk[y]){

rnk[y]++;

}

}

}

int main()

{

int n,m;

res=0;

cin>>n>>m;

// 初始化每一个结点,结点i的父亲结点是他本身

for (int i = 0; i <=n ; i++)

{

pa[i]=i;

rnk[i]=0;

}

res=n;

int tmp1,tmp2;

for (int i = 0; i < m; i++)

{

scanf(“%d%d”,&tmp1,&tmp2);

union_set(tmp1,tmp2);

}

cout<<res<<endl;

return 0;

}

C:使用并查集数某一个结点所在的集合的元素的总数

AC源码

#include <bits/stdc++.h>

using namespace std;

const int cmax = 1e3+5;

int pa[cmax]; //pa[x]=x表示结点x的父节点是x

int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩

int num[cmax]; //num[x]=k 表示结点x的数的集合元素的个数

// 查找结点x的父亲结点

int find_set(int x){

if(x!=pa[x])

pa[x]=find_set(pa[x]); // 带路径压缩的算法

return pa[x];

}

// 将集合合并

void union_set(int x,int y){

x=find_set(x);

y=find_set(y);

if(x==y)

return ;

if(rnk[x]>rnk[y]){

pa[y]=x;

num[x]+=num[y];

}

else{

pa[x]=y;

num[y]+=num[x];

if(rnk[x]==rnk[y]){

rnk[y]++;

}

}

}

int main()

{

int n,m;

cin>>n>>m;

for (int i = 0; i <=n ; i++)

{

pa[i]=i;

rnk[i]=0;

num[i]=1;

}

for(int i=0;i<m;i++){

int tmp,k1,k2;

cin>>tmp>>k1;

tmp–;

while (tmp>0)

{

cin>>k2;

union_set(k1,k2);

k1=k2;

tmp–;

}

}

cout<<num[pa[0]]<<endl;

return 0;

}

D:Kruskal算法,求图的最小生成树(MST)的权重

AC源码:

#include <bits/stdc++.h>

using namespace std;

const int cmax = 1e3+5;

struct edge

{

int x;int y;

int w;

};

bool cmp (edge m ,edge n){

return m.w<n.w;

}

int pa[cmax]; //pa[x]=x表示结点x的父节点是x

int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩

edge a[cmax];

int sum;

// 查找结点x的父亲结点

int find_set(int x){

if(x!=pa[x])

pa[x]=find_set(pa[x]); // 带路径压缩的算法

return pa[x];

}

// 将集合合并

void union_set(int x,int y,int w){

x=find_set(x);

y=find_set(y);

if(x==y)

return ;

if(rnk[x]>rnk[y]){

pa[y]=x;

}

else{

pa[x]=y;

if(rnk[x]==rnk[y]){

rnk[y]++;

}

}

sum+=w;

}

int main()

{

ios::sync_with_stdio(false);

cin.tie(0);

int n,m;

cin>>n>>m;

for (int i = 0; i <= n; i++)

{

pa[i]=i;

rnk[i]=0;

}

for(int i=0;i<m;i++){

cin>>a[i].x>>a[i].y>>a[i].w;

}

sum=0;

sort(a,a+m,cmp);

for (int i = 0; i < m; i++)

{

union_set(a[i].x,a[i].y,a[i].w);

}

cout<<sum<<endl;

return 0;

}

E:Kruskal算法,求图的最大生成树(MST)的权重

AC源码

#include <bits/stdc++.h>

using namespace std;

const int cmax = 1e3+5;

typedef long long ll;

struct edge

{

int x;int y;

int w;

};

bool cmp (edge m ,edge n){

return m.w>n.w;

}

int pa[cmax]; //pa[x]=x表示结点x的父节点是x

int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩

edge a[cmax];

ll sum;

// 查找结点x的父亲结点

int find_set(int x){

if(x!=pa[x])

pa[x]=find_set(pa[x]); // 带路径压缩的算法

return pa[x];

}

// 将集合合并

int union_set(int x,int y,int w){

x=find_set(x);

y=find_set(y);

if(x==y)

return 0;

if(rnk[x]>rnk[y]){

pa[y]=x;

}

else{

pa[x]=y;

if(rnk[x]==rnk[y]){

rnk[y]++;

}

}

sum+=w;

return 1;

}

int main()

{

ios::sync_with_stdio(false);

cin.tie(0);

int n,m;

cin>>n>>m;

for (int i = 0; i <= n; i++)

{

pa[i]=i;

rnk[i]=0;

}

for(int i=0;i<m;i++){

cin>>a[i].x>>a[i].y>>a[i].w;

}

sum=0;

sort(a,a+m,cmp);

int flag = 0;

for (int i = 0; i < m; i++)

{

int res=union_set(a[i].x,a[i].y,a[i].w);

if(res){

flag++;

}

}

if(flag==n-1)

cout<<sum<<endl;

else

cout<<“No solution.”<<endl;

return 0;

}

F:Dijkstra算法,求一个有向加权图中,从源点出发到其他各个顶点的最短路径。

单源最短路径问题

AC源码

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则近万的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)

最后

如果你看到了这里,觉得文章写得不错就给个赞呗?如果你觉得那里值得改进的,请给我留言。一定会认真查询,修正不足。谢谢。

最后针对Android程序员,我这边给大家整理了一些资料,包括不限于高级UI、性能优化、移动架构师、NDK、混合式开发(ReactNative+Weex)微信小程序、Flutter等全方面的Android进阶实践技术;希望能帮助到大家,也节省大家在网上搜索资料的时间来学习,也可以分享动态给身边好友一起学习!

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!**

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:Android)

最后

如果你看到了这里,觉得文章写得不错就给个赞呗?如果你觉得那里值得改进的,请给我留言。一定会认真查询,修正不足。谢谢。

[外链图片转存中…(img-LWgcT1bh-1712769562220)]

最后针对Android程序员,我这边给大家整理了一些资料,包括不限于高级UI、性能优化、移动架构师、NDK、混合式开发(ReactNative+Weex)微信小程序、Flutter等全方面的Android进阶实践技术;希望能帮助到大家,也节省大家在网上搜索资料的时间来学习,也可以分享动态给身边好友一起学习!

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值