既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
去除其中包含 NaN 的数据
data_df = data_df.dropna()
len(data_df) # 2000
设置矩阵
feature_cols = ['quality_of_faculty', 'publications', 'citations', 'alumni_employment',
'influence', 'quality_of_education', 'broad_impact', 'patents'] # 提取特征值
X = data_df[feature_cols]
Y = data_df['score']
# X Y分别为自变量 因变量矩阵
数据可视化
观察世界排名前十学校的平均得分情况,为此需要将同一学校不同年份的得分做一个平均。我们可以利用groupby()
函数,将同一学校的记录整合起来并通过mean()
函数取平均。之后我们按平均分降序排序,取前十个学校作为要观察的数据。
import matplotlib.pyplot as plt
import seaborn as sns
mean_df = data_df.groupby('institution').mean() # 按学校聚合并对聚合的列取平均
top_df = mean_df.sort_values(by='score', ascending=False).head(10) # 取前十学校
sns.set()
x = top_df['score'].values # 综合得分列表
y = top_df.index.values # 学校名称列表
sns.barplot(x, y, orient='h', palette="Blues_d") # 画条形图
plt.xlim(75, 101) # 限制 x 轴范围
plt.show()
用pairplot
的方法观察变量之间的关联关系,可以从图中看到,少部分变量之间有线性关系;各个变量和结果之间,近似对数关系。
sns.pairplot(data_df[feature_cols + ['score']], height=3, diag_kind="kde")
plt.show()
还可以用热力图的形式呈现相关度矩阵:
构建模型
取出对应自变量以及因变量的列,之后就可以基于此切分训练集和测试集,并进行模型构建与分析。
all_y = data_df['score'].values
all_x = data_df[feature_cols].values
# 取 values 是为了从 pandas 的 Series 转成 numpy 的 array
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(all_x, all_y, test_size=0.2, random_state=2020)
all_y.shape, all_x.shape, x_train.shape, x_test.shape, y_train.shape, y_test.shape # 输出数据行列信息
# ((2000,), (2000, 8), (1600, 8), (400, 8), (1600,), (400,))
from sklearn.linear_model import LinearRegression
LR = LinearRegression() # 线性回归模型
LR.fit(x_train, y_train) # 在训练集上训练
p_test = LR.predict(x_test) # 在测试集上预测,获得预测值
test_error = p_test - y_test # 预测误差
test_rmse = (test_error**2).mean()**0.5 # 计算 RMSE
'rmse: {:.4}'.format(test_rmse)
# rmse: 3.999
得到测试集的 RMSE 为 3.999,在百分制的预测目标下算一个尚可的结果。从评价指标上看貌似我们能根据各方面排名较好的预估综合得分,接下来我们观察一下学习到的参数,即各指标排名对综合得分的影响权重。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
**
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新