说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5
(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA
(Secure Hash Algorithm,安全散列算法)。
这里严格意义上来说,MD5 是一个摘要算法,用于生成字符串的摘要信息以及签名校验信息,可以理解为数字签名。因为加密算法的话要有加、解密,而 MD5 是不可逆的,因此不能真正算加密算法。这里考虑 MD5 有加密功能,这里把它归进来哈,杠精勿杠。
除了这两个之外,当然还有很多其他加密算法,比如 DES
(Data Encryption Standard,数据加密标准)、AES
(Advanced Encryption Standard,高级加密标准)。
对于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。
第一点好像现在不怎么成立了,MD5
和SHA-1
两大应用最多的算法被我国密码学家王小云破解了,小伙伴们可以看下这篇文章:密码学家王小云:十年破解MD5和SHA-1两大国际密码
重点来看下第二点,实际上,不管是什么哈希算法,我们只能尽量减少碰撞冲突的概率,理论上是没办法做到完全不冲突的。为什么这么说呢?
这里就基于组合数学中一个非常基础的理论,鸽巢原理
(也叫抽屉原理)。这个原理本身很简单,它是说,如果有 10 个鸽巢,有 11 只鸽子,那肯定有 1 个鸽巢中的鸽子数量多于 1 个,换句话说就是,肯定有 2 只鸽子在 1 个鸽巢内。
有了鸽巢原理的铺垫之后,我们再来看,为什么哈希算法无法做到零冲突?
我们知道,哈希算法产生的哈希值的长度是固定且有限的。比如前面举的 MD5 的例子,哈希值是固定的 128 位二进制串,能表示的数据是有限的,最多能表示 2^128 个数据,而我们要哈希的数据是无穷的。基于鸽巢原理,如果我们对 2 ^128+1 个数据求哈希值,就必然会存在哈希值相同的情况。这里你应该能想到,一般情况下,哈希值越长的哈希算法,散列冲突的概率越低。
不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1/2^128。
如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是被很难破解的。
除此之外,没有绝对安全的加密。越复杂、越难破解的加密算法,需要的计算时间也越长。比如 SHA-256 比 SHA-1 要更复杂、更安全,相应的计算时间就会比较长。密码学界也一直致力于找到一种快速并且很难被破解的哈希算法。我们在实际的开发过程中,也需要权衡破解难度和计算时间,来决定究竟使用哪种加密算法。
2、唯一标识
我们来举个例子。假如要你从海量图库里找一张图是否存在?你会怎么做?你不可能用文件名来判断吧,因为有些可能存在名字相同但图片内容不一样的。那你可能会说,既然名字相同,那我就比较里面的内容,把这种图转换成二进制串,再与图库中所有图的二进制串进行一一比对。如果相同,则说明图片在图库中存在。但是,每个图片小则几十 KB、大则几 MB,转化成二进制是一个非常长的串,比对起来非常耗时。有没有比较快的方法呢?
我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。
如果还想继续提高效率,我们可以把每个图片的唯一标识,和相应的图片文件在图库中的路径信息,都存储在散列表中。当要查看某个图片是不是在图库中的时候,我们先通过哈希算法对这个图片取唯一标识,然后在散列表中查找是否存在这个唯一标识。
如果不存在,那就说明这个图片不在图库中;如果存在,我们再通过散列表中存储的文件路径,获取到这个已经存在的图片,跟现在要插入的图片做全量的比对,看是否完全一样。如果一样,就说明已经存在;如果不一样,说明两张图片尽管唯一标识相同,但是并不是相同的图片。
3、数据校验
像我们做后台的经常会调用各种接口,那么肯定会有网络传输。我们知道,网络传输是不安全的,我们调用第三方接口,有可能被黑客劫持了并把数据篡改了。我们该如何确保在网络传输中重要的数据不被黑客篡改呢?
我们可以通过哈希算法,对数据进行校验,前面我们说过,哈希算法非常敏感,有一丁点的改变,最后计算出来的哈希值完全不一样。所以当调用完接口之后,我们可以通过相同的哈希算法,对调回来的数据求哈希值,然后与调用前的哈希值比较。如果不同,则数据被篡改了。
4、散列函数
前面讲了很多哈希算法的应用,实际上,散列函数也是哈希算法的一种应用。
我们前两节讲到,散列函数是设计一个散列表的关键。它直接决定了散列冲突的概率和散列表的性能。不过,相对哈希算法的其他应用,散列函数对于散列算法冲突的要求要低很多。即便出现个别散列冲突,只要不是过于严重,我们都可以通过开放寻址法或者链表法解决。
不仅如此,散列函数对于散列算法计算得到的值,是否能反向解密也并不关心。散列函数中用到的散列算法,更加关注散列后的值是否能平均分布,也就是,一组数据是否能均匀地散列在各个槽中。除此之外,散列函数执行的快慢,也会影响散列表的性能,所以,散列函数用的散列算法一般都比较简单,比较追求效率。
5、负载均衡
我们知道,负载均衡算法有很多,比如轮询、随机、加权轮询等。那如何才能实现一个会话粘滞
(session sticky)的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。
最直接的方法就是,维护一张映射关系表,这张表的内容是客户端 IP 地址或者会话 ID 与服务器编号的映射关系。客户端发出的每次请求,都要先在映射表中查找应该路由到的服务器编号,然后再请求编号对应的服务器。这种方法简单直观,但也有几个弊端:
-
如果客户端很多,映射表可能会很大,比较浪费内存空间;
-
客户端下线、上线,服务器扩容、缩容都会导致映射失效,这样维护映射表的成本就会很大;
如果借助哈希算法,这些问题都可以非常完美地解决。我们可以通过哈希算法,对客户端 IP 地址或者会话 ID 计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。 这样,我们就可以把同一个 IP 过来的所有请求,都路由到同一个后端服务器上。
6、数据分片
假如我们有 1T 的日志文件,这里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?
我们来分析一下。这个问题有两个难点,第一个是搜索日志很大,没办法放到一台机器的内存中。第二个难点是,如果只用一台机器来处理这么巨大的数据,处理时间会很长。
针对这两个难点,我们可以先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。具体的思路是这样的:为了提高处理的速度,我们用 n 台机器并行处理。我们从搜索记录的日志文件中,依次读出每个搜索关键词,并且通过哈希函数计算哈希值,然后再跟 n 取模,最终得到的值,就是应该被分配到的机器编号。
这样,哈希值相同的搜索关键词就被分配到了同一个机器上。也就是说,同一个搜索关键词会被分配到同一个机器上。每个机器会分别计算关键词出现的次数,最后合并起来就是最终的结果。
实际上,这里的处理过程也是 MapReduce 的基本设计思想。
7、分布式存储
复习的面试资料
这些面试全部出自大厂面试真题和面试合集当中,小编已经为大家整理完毕(PDF版)
- 第一部分:Java基础-中级-高级
- 第二部分:开源框架(SSM:Spring+SpringMVC+MyBatis)
- 第三部分:性能调优(JVM+MySQL+Tomcat)
- 第四部分:分布式(限流:ZK+Nginx;缓存:Redis+MongoDB+Memcached;通讯:MQ+kafka)
- 第五部分:微服务(SpringBoot+SpringCloud+Dubbo)
- 第六部分:其他:并发编程+设计模式+数据结构与算法+网络
进阶学习笔记pdf
- Java架构进阶之架构筑基篇(Java基础+并发编程+JVM+MySQL+Tomcat+网络+数据结构与算法)
- Java架构进阶之开源框架篇(设计模式+Spring+SpringMVC+MyBatis)
- Java架构进阶之分布式架构篇 (限流(ZK/Nginx)+缓存(Redis/MongoDB/Memcached)+通讯(MQ/kafka))
- Java架构进阶之微服务架构篇(RPC+SpringBoot+SpringCloud+Dubbo+K8s)
(img-FWsJORS9-1714722372248)]
[外链图片转存中…(img-JaqTrQsj-1714722372248)]
- Java架构进阶之微服务架构篇(RPC+SpringBoot+SpringCloud+Dubbo+K8s)
[外链图片转存中…(img-F4LVNQbH-1714722372249)]
[外链图片转存中…(img-OeffoYhg-1714722372249)]