既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
* 我们只需要将`a`或`b`其中之一转换成`double`,然后再参与运算即可。
* 当然,我们还可以这么写:
#include <stdio.h>
int main(){
int a = 10;
int b = 3;
double c = (a + 0.0) / b;
printf(“%lf\n”, c);
return 0;
}
* 或者这么写:
#include <stdio.h>
int main(){
int a = 10;
int b = 3;
double c = (a * 1.0) / b;
printf(“%lf\n”, c);
return 0;
}
* 核心就是:不改变原有表达式的值,在其中添加一些`double`类型的数,使得整个表达式转换成`double`。
* 使用强制类型转换时,有时候可能不是编译器想要的那样,因为这是写代码的人自己的行为,所以程序员自己要意识到其中潜在的风险。
* 比如将指针转换成整型,或者将`double`转换成指针,当然,有些强制转换可能直接导致程序崩溃。
---

>
> 通过这一章,我们学会了:
> 1)类型转换;
> 2)自动类型转换;
> 3)强制类型转换;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第01题】A + B | 四种输入方式,开启刷题的序章](https://bbs.csdn.net/topics/618545628)
* [【第10题】给定 n 和 n 个正整数,输出它们的平均数](https://bbs.csdn.net/topics/618545628)
* [【第12题】给定 r,求以 r 为半径的圆的周长和面积](https://bbs.csdn.net/topics/618545628)
---
**(13)- 位运算概览**
## 一、再谈二进制
* 我们在学习 [光天化日学C语言(06)- 进制转换入门](https://bbs.csdn.net/topics/618545628) 的时候,曾经提到过二进制。

* 在计算机中,非零即一。
### 1、二进制数值表示
* 例如,在计算机中,我们可以用单纯的 0 和 1 来表示数字。
>
> 1、101、1100011、100101010101 都是二进制数。
> 123、423424324、101020102101AF 则不是,因为有 0 和 1 以外的数字位。
>
>
>
* 一般为了不产生二义性,我们会在数字的右下角写上它的进制,例如:
* 101
0
(
10
)
1010\_{(10)}
1010(10)
* 代表的是十进制下的 1010,也就是十进制下的 “一千零一十”。
* 101
0
(
2
)
1010\_{(2)}
1010(2)
* 代表的是二进制下的 1010,也就是十进制下的 “十”。

### 2、二进制加法
>
> 二进制加法采用从低到高的位依次相加,当相加的和为2时,则向高位进位。
>
>
>
* 例如,在二进制中,加法如下:
1
(
2
)
+
1
(
2
)
=
1
0
(
2
)
1
(
2
)
+
0
(
2
)
=
1
(
2
)
0
(
2
)
+
1
(
2
)
=
1
(
2
)
0
(
2
)
+
0
(
2
)
=
0
(
2
)
1\_{(2)} + 1\_{(2)} = 10\_{(2)} \\ 1\_{(2)} + 0\_{(2)} = 1\_{(2)} \\ 0\_{(2)} + 1\_{(2)} = 1\_{(2)} \\ 0\_{(2)} + 0\_{(2)} = 0\_{(2)}
1(2)+1(2)=10(2)1(2)+0(2)=1(2)0(2)+1(2)=1(2)0(2)+0(2)=0(2)
### 3、二进制减法
>
> 二进制减法采用从低到高的位依次相减,当遇到 0 减 1 的情况,则向高位借位。
>
>
>
* 例如,在二进制中:减法如下:
1
(
2
)
−
1
(
2
)
=
0
(
2
)
1
(
2
)
−
0
(
2
)
=
1
(
2
)
1
0
(
2
)
−
1
(
2
)
=
1
(
2
)
0
(
2
)
−
0
(
2
)
=
0
(
2
)
1\_{(2)} - 1\_{(2)} = 0\_{(2)} \\ 1\_{(2)} - 0\_{(2)} = 1\_{(2)} \\ 10\_{(2)} - 1\_{(2)} = 1\_{(2)} \\ 0\_{(2)} - 0\_{(2)} = 0\_{(2)}
1(2)−1(2)=0(2)1(2)−0(2)=1(2)10(2)−1(2)=1(2)0(2)−0(2)=0(2)
* 而我们今天要讲的位运算正是基于二进制展开的。
## 二、位运算简介
* 位运算可以理解成对二进制数字上的每一个位进行操作的运算。
* 位运算分为 布尔位运算符 和 移位位运算符。
* 布尔位运算符又分为 位与(&)、位或(|)、异或(^)、按位取反(~);移位位运算符分为 左移(<<) 和 右移(>>)。
* 如图所示:


## 三、位运算概览
* 今天,我们先来对位运算进行一个初步的介绍。后面会对每个运算符的应用做详细介绍,包括刷题的时候如何运用位运算来加速等等。
### 1、布尔位运算
* 对于布尔位运算,总共有四个,如下表所示:
| C语言运算符表示 | 含义 | 示例 |
| --- | --- | --- |
| `&` | 位与 | `x & y` |
| `|` | 位或 | `x | y` |
| `^` | 异或 | `x ^ y` |
| `~` | 按位取反 | `x ~ y` |
#### 1)位与
* 位与就是对操作数的每一位按照如下表格进行运算,对于每一位只有 0 或 1 两种情况,所以组合出来总共
2
2
=
4
2^2 = 4
22=4 种情况。
| 左操作数 | 右操作数 | 结果 |
| --- | --- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

#include <stdio.h>
int main() {
int a = 0b1010; // (1)
int b = 0b0110; // (2)
printf(“%d\n”, (a & b) ); // (3)
return 0;
}
* (
1
)
(1)
(1) 在C语言中,以`0b`作为前缀,表示这是一个二进制数。那么`a`的实际值就是
(
1010
)
2
(1010)\_2
(1010)2。
* (
2
)
(2)
(2) 同样的,`b`的实际值就是
(
0110
)
2
(0110)\_2
(0110)2;
* (
3
)
(3)
(3) 那么这里`a & b`就是对
(
1010
)
2
(1010)\_2
(1010)2 和
(
0110
)
2
(0110)\_2
(0110)2 的每一位做表格中的`&`运算。
* 所以最后输出结果为:
2
* 因为输出的是十进制数,它的二进制表示为:
(
0010
)
2
(0010)\_2
(0010)2。
* 注意:这里的 **前导零** 可有可无,作者写上前导零只是为了对齐以及让读者更加清楚位与的运算方式。
#### 2)位或
* 位或的运算结果如下:
| 左操作数 | 右操作数 | 结果 |
| --- | --- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

* 我们来看以下这段程序:
#include <stdio.h>
int main() {
int a = 0b1010;
int b = 0b0110;
printf(“%d\n”, (a | b) );
return 0;
}
* 以上程序的输出结果为:
14
* 即二进制下的
(
1110
)
2
(1110)\_2
(1110)2 。
#### 3)异或
* 异或的运算结果如下:
| 左操作数 | 右操作数 | 结果 |
| --- | --- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

* 我们来看以下这段程序:
#include <stdio.h>
int main() {
int a = 0b1010;
int b = 0b0110;
printf(“%d\n”, (a ^ b) );
return 0;
}
* 以上程序的输出结果为:
12
* 即二进制下的
(
1100
)
2
(1100)\_2
(1100)2 。
#### 4)按位取反
* 按位取反其实就是 0 变 1, 1 变 0。
* 同样,我们来看一段程序。
#include <stdio.h>
int main() {
int a = 0b1;
printf(“%d\n”, ~a );
return 0;
}
* 这里我想卖个关子,同学们可以自己试一下运行结果。
* 至于为什么会输出这个结果,我会在 [光天化日学C语言(17)- 位运算 ~ 的应用](https://bbs.csdn.net/topics/618545628) 中进行详细讲解,敬请期待。
### 2、移位位运算
* 对于移位位运算,总共有两个,如下表所示:
| C语言运算符表示 | 含义 | 示例 |
| --- | --- | --- |
| `<<` | 左移 | `x << y` |
| `>>` | 右移 | `x >> y` |
#### 1)左移
* 其中`x << y`代表将二进制的
x
x
x 的末尾添加
y
y
y 个零,就好比向左移动了
y
y
y 位。
* 比如
(
1011
)
2
(1011)\_2
(1011)2 左移三位的结果为:
(
1011000
)
2
(1011000)\_2
(1011000)2。
#### 2)右移
* 其中`x >> y`代表将二进制的
x
x
x 从右边开始截掉
y
y
y 个数,就好比向右移动了
y
y
y 位。
* 比如
(
101111
)
2
(101111)\_2
(101111)2 右移三位的结果为:
(
101
)
2
(101)\_2
(101)2。
---

>
> 通过这一章,我们学会了:
> 1)位与 & ;
> 2)位或 |
> 3)异或 ^;
> 4)按位取反 ~;
> 5)左移 <<;
> 6)右移 >>;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第01题】A + B | 四种输入方式,开启刷题的序章](https://bbs.csdn.net/topics/618545628)
* [【第39题】位与 & 的应用 | 一句话消除末尾连续的 1](https://bbs.csdn.net/topics/618545628)
---
**(14)- 位运算 & 的应用**
## 一、位与运算符
* 位与运算符是一个二元的位运算符,也就是有两个操作数,表示为`x & y`。
* 位与运算会对操作数的每一位按照如下表格进行运算,对于每一位只有 0 或 1 两种情况,所以组合出来总共
2
2
=
4
2^2 = 4
22=4 种情况。
| 左操作数 | 右操作数 | 结果 |
| --- | --- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
* 通过这个表,我们得出一些结论:
* 1)无论是 0 或 1,只要位与上 1,还是它本身;
* 2)无论是 0 或 1,只要位与上 0,就变成 0;

#include <stdio.h>
int main() {
int a = 0b1010; // (1)
int b = 0b0110; // (2)
printf(“%d\n”, (a & b) ); // (3)
return 0;
}
* (
1
)
(1)
(1) 在C语言中,以`0b`作为前缀,表示这是一个二进制数。那么`a`的实际值就是
(
1010
)
2
(1010)\_2
(1010)2。
* (
2
)
(2)
(2) 同样的,`b`的实际值就是
(
0110
)
2
(0110)\_2
(0110)2;
* (
3
)
(3)
(3) 那么这里`a & b`就是对
(
1010
)
2
(1010)\_2
(1010)2 和
(
0110
)
2
(0110)\_2
(0110)2 的每一位做表格中的`&`运算。
* 所以最后输出结果为:
2
* 因为输出的是十进制数,它的二进制表示为:
(
0010
)
2
(0010)\_2
(0010)2。
* 注意:这里的 **前导零** 可有可无,作者写上前导零只是为了对齐以及让读者更加清楚位与的运算方式。
## 二、位与运算符的应用
### 1、奇偶性判定
* 我们判断一个数是奇数还是偶数,往往是通过取模`%`来判断的,如下:
#include <stdio.h>
int main() {
if(5 % 2 == 1) {
printf(“5是奇数\n”);
}
if(6 % 2 == 0) {
printf(“6是偶数\n”);
}
return 0;
}
* 然而,我们也可以这么写:
#include <stdio.h>
int main() {
if(5 & 1) {
printf(“5是奇数\n”);
}
if( (6 & 1) == 0 ) {
printf(“6是偶数\n”);
}
return 0;
}
* 哇,好神奇!
* 这是利用了奇数和偶数分别的二进制数的特性,如下表所示:
| - | 二进制末尾位 |
| --- | --- |
| 奇数 | 1 |
| 偶数 | 0 |
* 所以,我们对任何一个数,通过将它和 `0b1`进行位与,结果为零,则必然这个数的二进制末尾位为0,根据以上表就能得出它是偶数了;否则,就是奇数。
* 注意,由于`if`语句我们还没有实际提到过,所以这里简单提一下,后面会有系统的讲解:
if( expr ) { body }
* 对于以上语句,`expr`代表的是一个表达式,表达式的值最后只有 零 或 非零,如果值为非零,才会执行`body`中的内容。
### 2、取末五位
>
> 【例题1】给定一个数,求它的二进制表示的末五位,以十进制输出即可。
>
>
>

* 这个问题的核心就是:我们只需要末五位,剩下的位我们是不需要的,所以可以将给定的数 位与上`0b11111`,这样一来就直接得到末五位的值了。
* 代码实现如下:
#include <stdio.h>
int main() {
int x;
scanf(“%d”, &x);
printf(“%d\n”, (x & 0b11111) );
return 0;
}

>
> 【例题2】如果是想得到末七位、末九位、末十四位、末 K 位,应该如何实现呢?
>
>
>
### 3、消除末尾五位
>
> 【例题3】给定一个 32 位整数,要求消除它的末五位。
>
>
>
* 还是根据位与的性质,消除末五位的含义,有两层:
* 1)末五位,要全变成零;
* 2)剩下的位不变;
* 那么,根据位运算的性质,我们需要数,它的高27位都为1,低五位都为 0,则这个数就是:
* (
11111111111111111111111111100000
)
2
(11111111111111111111111111100000)\_2
(11111111111111111111111111100000)2
* 但是如果要这么写,代码不疯掉,人也会疯掉,所以一般我们把它转成十六进制,每四个二进制位可以转成一个十六进制数,所以得到十六进制数为`0xffffffe0`。
* 代码实现如下:
#include <stdio.h>
int main() {
int x;
scanf(“%d”, &x);
printf(“%d\n”, (x & 0xffffffe0) );
return 0;
}

### 4、消除末尾连续1

>
> 【例题4】给出一个整数,现在要求将这个整数转换成二进制以后,将末尾连续的1都变成0,输出改变后的数(以十进制输出即可)。
>
>
>
* 我们知道,这个数的二进制表示形式一定是:
* .
.
.
0
11...11
⏟
k
...0\underbrace{11...11}\_{\rm k}
...0k
11...11
* 如果,我们把这个二进制数加上1,得到的就是:
* .
.
.
1
00...00
⏟
k
...1\underbrace{00...00}\_{\rm k}
...1k
00...00
* 我们把这两个数进行位与运算,得到:
* .
.
.
0
00...00
⏟
k
...0\underbrace{00...00}\_{\rm k}
...0k
00...00
* 所以,你学会了吗?
### 5、2的幂判定
>
> 【例题5】请用一句话,判断一个正数是不是2的幂。
>
>
>
* 如果一个数是 2 的幂,它的二进制表示必然为以下形式:
* 1
00...00
⏟
k
1\underbrace{00...00}\_{\rm k}
1k
00...00
* 这个数的十进制值为
2
k
2^k
2k。
* 那么我们将它减一,即
2
k
−
1
2^k-1
2k−1 的二进制表示如下(参考二进制减法的借位):
* 0
11...11
⏟
k
0\underbrace{11...11}\_{\rm k}
0k
11...11
* 于是 这两个数位与的结果为零,于是我们就知道了如果一个数
x
x
x 是 2 的幂,那么`x & (x-1)`必然为零。而其他情况则不然。
* 所以本题的答案为:
(x & (x-1)) == 0
---

>
> 通过这一章,我们学会了:
> 1)用位运算 & 来做奇偶性判定;
> 2)用位运算 & 获取一个数的末五位,末七位,末K位;
> 3)用位运算 & 消除某些二进制位;
> 4)用位运算 & 消除末尾连续 1;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第39题】位与 & 的应用 | 一句话消除末尾连续的 1](https://bbs.csdn.net/topics/618545628)
---
**(15)- 位运算 | 的应用**
## 一、位或运算符
* 位或运算符是一个二元的位运算符,也就是有两个操作数,表示为`x | y`。
* 位或运算会对操作数的每一位按照如下表格进行运算,对于每一位只有 0 或 1 两种情况,所以组合出来总共
2
2
=
4
2^2 = 4
22=4 种情况。
| 左操作数 | 右操作数 | 结果 |
| --- | --- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |
* 通过这个表,我们得出一些结论:
* 1)无论是 0 或 1,只要位或上 1,就变成1;
* 2)只有当两个操作数都是0的时候,才变成 0;

#include <stdio.h>
int main() {
int a = 0b1010; // (1)
int b = 0b0110; // (2)
printf(“%d\n”, (a | b) ); // (3)
return 0;
}
* (
1
)
(1)
(1) 在C语言中,以`0b`作为前缀,表示这是一个二进制数。那么`a`的实际值就是
(
1010
)
2
(1010)\_2
(1010)2。
* (
2
)
(2)
(2) 同样的,`b`的实际值就是
(
0110
)
2
(0110)\_2
(0110)2;
* (
3
)
(3)
(3) 那么这里`a | b`就是对
(
1010
)
2
(1010)\_2
(1010)2 和
(
0110
)
2
(0110)\_2
(0110)2 的每一位做表格中的`|`运算。
* 所以最后输出结果为:
14
* 因为输出的是十进制数,它的二进制表示为:
(
1110
)
2
(1110)\_2
(1110)2。
## 二、位或运算符的应用
### 1、设置标记位
>
> 【例题1】给定一个数,判断它二进制低位的第 5 位,如果为 0,则将它置为 1。
>
>
>

* 这个问题,我们很容易联想到位或。
* 我们分析一下题目意思,如果第 5 位为 1,不用进行任何操作;如果第 5 位为 0,则置为 1。言下之意,无论第五位是什么,我们都直接置为 1即可,代码如下:
#include <stdio.h>
int main() {
int x;
scanf(“%d”, &x);
printf(“%d\n”, x | 0b10000);
return 0;
}
### 2、置空标记位
>
> 【例题2】给定一个数,判断它二进制低位的第 5 位,如果为 1,则将它置为 0。
>
>
>
* 这个问题,我们在学过 [光天化日学C语言(14)- 位运算 & 的应用](https://bbs.csdn.net/topics/618545628) 以后,很容易得出这样一种做法:
#include <stdio.h>
int main() {
int x;
scanf(“%d”, &x);
printf(“%d\n”, x & 0b11111111111111111111111111101111);
return 0;
}
* 其它位不能变,所以位与上1;第5位要置零,所以位与上0;
* 这样写有个问题,就是这串数字太长了,一点都不美观,而且容易写错,当然我们也可以转换成 十六进制,转换的过程也有可能出错。
* 而我们利用位或,只能将第5位设置成1,怎么把它设置成0呢?

>
> 我们可以配合减法来用。分成以下两步:
> 1)首先,强行将低位的第5位置成1;
> 2)然后,强行将低位的第5位去掉;
>
>
>
* 第
(
1
)
(1)
(1) 步可以采用位或运算,而第
(
2
)
(2)
(2) 步,我们可以直接用减法即可。
* 代码实现如下:
#include <stdio.h>
int main() {
int x;
int a = 0b10000;
scanf(“%d”, &x);
printf(“%d\n”, (x | a) - a );
return 0;
}
* 注意:直接减是不行的,因为我们首先要保证那一位为 1,否则贸然减会产生借位,和题意不符。
### 3、低位连续零变一
>
> 【例题3】给定一个整数
>
>
>
>
> x
>
>
>
> x
>
>
> x,将它低位连续的 0 都变成 1。
>
>
>
* 假设这个整数低位连续有
k
k
k 个零,二进制表示如下:
* .
.
.
1
00...00
⏟
k
...1\underbrace{00...00}\_{\rm k}
...1k
00...00
* 那么,如果我们对它进行减一操作,得到的二进制数就是:
* .
.
.
0
11...11
⏟
k
...0\underbrace{11...11}\_{\rm k}
...0k
11...11
* 我们发现,只要对这两个数进行位或,就能得到:
* .
.
.
1
11...11
⏟
k
...1\underbrace{11...11}\_{\rm k}
...1k
11...11
* 也正是题目所求,所以代码实现如下:
#include <stdio.h>
int main() {
int x;
scanf(“%d”, &x);
printf(“%d\n”, x | (x-1) ); // (1)
return 0;
}
* (
1
)
(1)
(1) `x | (x-1)`就是题目所求的 “低位连续零变一” 。

### 4、低位首零变一

>
> 【例题4】给定一个整数
>
>
>
>
> x
>
>
>
> x
>
>
> x,将它低位第一个 0 变成 1。
>
>
>
* 记得在评论区留下你的答案哦 ~
---

>
> 通过这一章,我们学会了:
> 1)用位运算 | 来做标记位的设置;
> 2)用位运算 | 来做标记位的清除;
> 3)用位运算 | 将低位连续的零变成一;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第40题】位或 | 的应用 | 低位首零变一](https://bbs.csdn.net/topics/618545628)
---
**(16)- 位运算 ^ 的应用**
## 一、异或运算符
* 异或运算符是一个二元的位运算符,也就是有两个操作数,表示为`x ^ y`。
* 异或运算会对操作数的每一位按照如下表格进行运算,对于每一位只有 0 或 1 两种情况,所以组合出来总共
2
2
=
4
2^2 = 4
22=4 种情况。
| 左操作数 | 右操作数 | 结果 |
| --- | --- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
* 通过这个表,我们得出一些结论:
* 1)两个相同的十进制数异或的结果一定为零。
* 2)任何一个数和 0 的异或结果一定是它本身。
* 3)异或运算满足结合律和交换律。

#include <stdio.h>
int main() {
int a = 0b1010; // (1)
int b = 0b0110; // (2)
printf(“%d\n”, (a ^ b) ); // (3)
return 0;
}
* (
1
)
(1)
(1) 在C语言中,以`0b`作为前缀,表示这是一个二进制数。那么`a`的实际值就是
(
1010
)
2
(1010)\_2
(1010)2。
* (
2
)
(2)
(2) 同样的,`b`的实际值就是
(
0110
)
2
(0110)\_2
(0110)2;
* (
3
)
(3)
(3) 那么这里`a ^ b`就是对
(
1010
)
2
(1010)\_2
(1010)2 和
(
0110
)
2
(0110)\_2
(0110)2 的每一位做表格中的`^`运算。
* 所以最后输出结果为:
12
* 因为输出的是十进制数,它的二进制表示为:
(
1100
)
2
(1100)\_2
(1100)2。
## 二、异或运算符的应用
### 1、标记位取反
>
> 【例题1】给定一个数,将它的低位数起的第 4 位取反,0 变 1,1 变 0。
>
>
>

* 这个问题,我们很容易联想到异或。
* 我们分析一下题目意思,如果第 4 位为 1,则让它异或上 `0b1000`就能变成 0;如果第 4 位 为 0,则让它异或上 `0b1000`就能变成 1,也就是无论如何都是异或上 `0b1000`,代码如下:
#include <stdio.h>
int main() {
int x;
scanf(“%d”, &x);
printf(“%d\n”, x ^ 0b1000);
return 0;
}
### 2、变量交换
>
> 【例题2】给定两个数
>
>
>
>
> a
>
>
>
> a
>
>
> a 和
>
>
>
>
> b
>
>
>
> b
>
>
> b,用异或运算交换它们的值。
>
>
>
* 这个是比较老的面试题了,直接给出代码:
#include <stdio.h>
int main() {
int a, b;
while (scanf(“%d %d”, &a, &b) != EOF) {
a = a ^ b; // (1)
b = a ^ b; // (2)
a = a ^ b; // (3)
printf(“%d %d\n”, a, b);
}
return 0;
}
* 我们直接来看
(
1
)
(1)
(1) 和
(
2
)
(2)
(2) 这两句话,相当于`b`等于`a ^ b ^ b`,根据异或的几个性质,我们知道,这时候的`b`的值已经变成原先`a`的值了。
* 而再来看第
(
3
)
(3)
(3) 句话,相当于`a`等于`a ^ b ^ a`,还是根据异或的几个性质,这时候,`a`的值已经变成了原先`b`的值。
* 从而实现了变量`a`和`b`的交换。
### 3、出现奇数次的数
>
> 【例题3】输入
>
>
>
>
> n
>
>
>
> n
>
>
> n 个数,其中只有一个数出现了奇数次,其它所有数都出现了偶数次。求这个出现了奇数次的数。
>
>
>
* 根据异或的性质,两个一样的数异或结果为零。也就是所有出现偶数次的数异或都为零,那么把这
n
n
n 个数都异或一下,得到的数就一定是一个出现奇数次的数了。
#include <stdio.h>
int main() {
int n, x, i, ans;
scanf(“%d”, &n);
ans = 0;
for(i = 0; i < n; ++i) {
scanf(“%d”, &x);
ans = (ans ^ x);
}
printf(“%d\n”, ans);
return 0;
}
### 4、丢失的数

>
> 【例题4】给定一个
>
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
> n-1
>
>
> n−1 个数,分别代表 1 到
>
>
>
>
> n
>
>
>
> n
>
>
> n 的其中
>
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
> n-1
>
>
> n−1 个,求丢失的那个数。
>
>
>
* 记得在评论区留下你的答案哦 ~
### 5、简单加密
* 基于 **两个数异或为零**,**任何数和零异或为其本身** 这两个特点,异或还可以用来做简单的加密。
* 将明文异或上一个固定的数变成密文以后,可以通过继续异或上这个数,再将密文转变成明文。
---

>
> 通过这一章,我们学会了:
> 1)用位运算 ^ 来做标记位的取反;
> 2)用位运算 ^ 来做变量交换;
> 3)用位运算 ^ 找出出现奇数次的数;
> 4)用位运算 ^ 的加密解密;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第41题】异或 ^ 的应用 | 丢失的那个数](https://bbs.csdn.net/topics/618545628)
---
**(17)- 位运算 ~ 的应用**
## 一、取反运算符
* 取反运算符是一个单目位运算符,也就是只有一个操作数,表示为`~x`。
* 取反运算会对操作数的每一位按照如下表格进行运算,对于每一位只有 0 或 1 两种情况。
| 操作数 | 取反结果 |
| --- | --- |
| 0 | 1 |
| 1 | 0 |
#include <stdio.h>
int main() {
int a = 0b1;
printf(“%d\n”, ~a );
return 0;
}
* 这里`~a`代表的是对二进制数 1 进行取反,直观感受应该是 0。
* 但是实际输出的却是:
-2
* 这是为什么呢?
* 那是因为,这是一个 32 位整数,实际的取反操作是这样的:
~ 00000000 00000000 00000000 00000001
11111111 11111111 11111111 11111110
* 32位整数的二进制表示,前导零也要参与取反。
* 而对于一个有符号的 32 位整数,我们需要用最高位来代表符号位,即最高位为 0,则代表正数;最高位为 1,则代表负数;
* 这时候我们就需要引入补码的概念了。
### 1、补码
* 在计算机中,二进制编码是采用补码的形式表示的,补码定义如下:
>
> 正数的补码是它本身,符号位为 0;负数的补码为正数数值二进制位取反后加一,符号位为一;
>
>
>
### 2、补码举例
* 根据补码的定义,`-2`的补码计算,需要经过两步:
* 1)对 2 的二进制进行按位取反,如下:
~ 00000000 00000000 00000000 00000010
11111111 11111111 11111111 11111101
* 2)然后加上 1,如下:
11111111 11111111 11111111 11111101
- 00000000 00000000 00000000 00000001
11111111 11111111 11111111 11111110
* 结果正好为我们开始提到的`~1`的结果。
### 3、补码的真实含义
* 补码的真实含义,其实体现在 “补” 这个字上,在数学上,两个互为相反数的数字相加等于 0,而在计算机中,两个互为相反数的数字相加等于
2
n
2^n
2n。
* 换言之,互为相反数的两个数互补,补成
2
n
2^n
2n。
* 对于 32位整型,
n
=
32
n = 32
n=32;对于 64位整型,
n
=
64
n = 64
n=64。所以补码也可以表示成如下形式:
* [
x
]
补
=
{
x
(
0
≤
x
<
2
n
−
1
)
2
n
+
x
(
−
2
n
−
1
≤
x
<
0
)
[x]\_补 = \begin{cases}x & (0 \le x \lt 2^{n-1})\\ 2^{n} + x & (-2^{n-1} \le x \lt 0)\\ \end{cases}
[x]补={x2n+x(0≤x<2n−1)(−2n−1≤x<0)
* 于是,对于`int`类型,就有:
* x
+
(
−
x
)
=
2
32
x + (-x) = 2^{32}
x+(−x)=232
* 因此,
−
2
=
2
32
−
2
-2 = 2^{32} - 2
−2=232−2。
* 于是,我们开始数数……
2^32 = 1 00000000 00000000 00000000 00000000
2^32 - 1 = 11111111 11111111 11111111 11111111
2^32 - 2 = 11111111 11111111 11111111 11111110
…
* 近一步了解了`-2`的二进制表示。
* 关于补码的深入内容,详细可以参考这篇文章:[《C/C++ 面试 100 例》(九)补码全网最全总结](https://bbs.csdn.net/topics/618545628)。
## 二、取反运算符的应用
### 1、0 的取反
>
> 【例题1】0 的取反结果为多少呢?
>
>
>

* 首先对源码进行取反,得到:
~ 00000000 00000000 00000000 00000000
11111111 11111111 11111111 11111111
* 这个问题,我们刚讨论完,这个答案为
2
32
−
1
2^{32}-1
232−1。但是实际输出时,你会发现,它的值是`-1`。
* 这是为什么?
* 搞得我一头雾水。
* 原因是因为在C语言中有两种类型的`int`,分别为`unsigned int`和`signed int`,我们之前讨论的`int`都是`signed int`的简称。
#### 1)有符号整型
* 对于有符号整型`signed int`而言,最高位表示符号位,所以只有31位能表示数值,能够表示的数值范围是:
−
2
31
≤
x
≤
2
31
−
1
-2^{31} \le x \le 2^{31}-1
−231≤x≤231−1
* 所以,对于有符号整型,输出采用`%d`,如下:
#include <stdio.h>
int main() {
printf(“%d\n”, ~0 );
return 0;
}
* 结果为:
-1
#### 2)无符号整型
* 对于无符号整型`unsigned int`而言,由于不需要符号位,所以总共有32位表示数值,数值范围为:
* 0
≤
x
≤
2
32
−
1
0 \le x \le 2^{32}-1
0≤x≤232−1
* 对于无符号整型,输出采用`%u`,如下:
#include <stdio.h>
int main() {
printf(“%u\n”, ~0 );
return 0;
}
* 结果为:
4294967295
* 即
2
32
−
1
2^{32}-1
232−1。
### 2、相反数
>
> 【例题2】给定一个`int`类型的正数
>
>
>
>
> x
>
>
>
> x
>
>
> x,求
>
>
>
>
> x
>
>
>
> x
>
>
> x 的相反数(注意:不能用负号)。
>
>
>
* 这里,我们可以直接利用补码的定义,对于正数
x
x
x,它的相反数的补码就是
x
x
x 二进制取反加一。即:`~x + 1`。
#include <stdio.h>
int main() {
int x = 18;
printf(“%d\n”, ~x + 1 );
return 0;
}
* 运行结果如下:
-18
### 3、代替减法
>
> 【例题3】给定两个`int`类型的正数
>
>
>
>
> x
>
>
>
> x
>
>
> x 和
>
>
>
>
> y
>
>
>
> y
>
>
> y,实现
>
>
>
>
> x
>
>
> −
>
>
> y
>
>
>
> x - y
>
>
> x−y(注意:不能用减号)。
>
>
>
* 这个问题比较简单,如果上面的相反数已经理解了,那么,`x - y`其实就可以表示成`x + (-y)`,而`-y`又可以表示成`~y + 1`,所以减法 `x - y`就可以用`x + ~y + 1`来代替。
* 代码实现如下:
#include <stdio.h>
int main() {
int a = 8;
int b = 17;
printf(“%d\n”, a + ~b + 1 );
return 0;
}
* 运行结果为:
-9
### 4、代替加法
>
> 【例题4】给定两个`int`类型的正数
>
>
>
>
> x
>
>
>
> x
>
>
> x 和
>
>
>
>
> y
>
>
>
> y
>
>
> y,实现
>
>
>
>
> x
>
>
> +
>
>
> y
>
>
>
> x + y
>
>
> x+y(注意:不能用加号)。
>
>
>
* 我们可以把`x + y`变成`x - (-y)`,而`-y`又可以替换成 `~y + 1`;
* 所以`x + y`就变成了`x - ~y - 1`,不用加号实现了加法运算。
#include <stdio.h>
int main() {
int x = 18;
int y = 7;
printf(“%d\n”, x - ~y - 1 );
return 0;
}
* 运行结果为:
25
---

>
> 通过这一章,我们学会了:
> 1)按位取反运算符;
> 2)补码的运算;
> 3)有符号整型和无符号整型;
> 4)相反数、加法、减法、等于判定的另类解法;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第42题】按位取反~的应用 | 相反数](https://bbs.csdn.net/topics/618545628)
---
**(18)- 位运算 << 的应用**
## 一、左移运算符
### 1、左移的二进制形态
* 左移运算符是一个二元的位运算符,也就是有两个操作数,表示为`x << y`。其中`x`和`y`均为整数。
* `x << y`念作:“将
x
x
x 左移
y
y
y 位”,这里的位当然就是二进制位了,那么它表示的意思也就是:先将
x
x
x 用二进制表示,然后再左移
y
y
y 位,并且在尾部添上
y
y
y 个零。
* 举个例子:对于二进制数
2
3
10
=
(
10111
)
2
23\_{10} = (10111)\_2
2310=(10111)2 左移
y
y
y 位的结果就是:
(
10111
0...0
⏟
y
)
2
(10111\underbrace{0...0}\_{\rm y})\_2
(10111y
0...0)2
### 2、左移的执行结果
* `x << y`的执行结果等价于:
* x
×
2
y
x \times 2^y
x×2y
* 如下代码:
#include <stdio.h>
int main() {
int x = 3;
int y = 5;
printf(“%d\n”, x << y);
return 0;
}
* 输出结果为:
96
* 正好符合这个左移运算符的实际含义:
* 96
=
3
×
2
5
96 = 3 \times 2^5
96=3×25
>
> 最常用的就是当
>
>
>
>
> x
>
>
> =
>
>
> 1
>
>
>
> x = 1
>
>
> x=1 时,`1 << y`代表的就是
>
>
>
>
>
> 2
>
>
> y
>
>
>
>
> 2^y
>
>
> 2y,即 2 的幂。
>
>
>
### 3、负数左移的执行结果
* 所谓负数左移,就是`x << y`中,当`x`为负数的情况,代码如下:
#include <stdio.h>
int main() {
printf(“%d\n”, -1 << 1);
return 0;
}
* 它的输出如下:
-2
* 我们发现同样是满足
x
×
2
y
x \times 2^y
x×2y 的,这个可以用补码来解释,`-1`的补码为:
* 11111111
11111111
11111111
11111111
11111111 \ 11111111 \ 11111111 \ 11111111
11111111 11111111 11111111 11111111
* 左移一位后,最高位的 1 就没了,低位补上 0,得到:
* 11111111
11111111
11111111
11111110
11111111 \ 11111111 \ 11111111 \ 11111110
11111111 11111111 11111111 11111110
* 而这,正好是 `-2`的补码,同样,继续左移 1 位,得到:
* 11111111
11111111
11111111
11111100
11111111 \ 11111111 \ 11111111 \ 11111100
11111111 11111111 11111111 11111100
* 这是`-4`的补码,以此类推,所以负整数的左移结果同样也是
x
×
2
y
x \times 2^y
x×2y。
>
> 可以理解成 `- (x << y)`和`(-x) << y`是等价的。
>
>
>
### 4、左移负数位是什么情况
* 刚才我们讨论了
x
<
0
x < 0
x<0 的情况,那么接下来,我们试下
y
<
0
y < 0
y<0 的情况会是如何?
* 是否同样满足:
x
×
2
y
x \times 2^y
x×2y 呢?
* 如果还是满足,那么两个整数的左移就有可能产生小数了。
* 看个例子:
#include <stdio.h>
int main() {
printf(“%d\n”, 32 << -1); // 16
printf(“%d\n”, 32 << -2); // 8
printf(“%d\n”, 32 << -3); // 4
printf(“%d\n”, 32 << -4); // 2
printf(“%d\n”, 32 << -5); // 1
printf(“%d\n”, 32 << -6); // 0
printf(“%d\n”, 32 << -7); // 0
return 0;
}
* 虽然能够正常运行,但是结果好像不是我们期望的,而且会报警告如下:
>
> [Warning] left shift count is negative [-Wshift-count-negative]
>
>
>
* 实际上,编辑器告诉我们尽量不用左移的时候用负数,但是它的执行结果不能算错误,起码例子里面对了,结果不会出现小数,而是取整了。
* 左移负数位其实效果和右移对应正数数值位一致,右移相关的内容,我们会在 **光天化日学C语言(19)- 位运算 >> 的应用** 中讲到。
### 5、左移时溢出会如何
* 我们知道,`int`类型的数都是 32 位的,最高位代表符号位,那么假设最高位为 1,次高位为 0,左移以后,符号位会变成 0,会产生什么问题呢?
* 举个例子,对于
−
2
31
+
1
-2^{31}+1
−231+1 的二进制表示为:最高位和最低位为1,其余为零。
#include <stdio.h>
int main() {
int x = 0b10000000000000000000000000000001;
printf(“%d\n”, x); // -2147483647
return 0;
}
* 输出结果为:
-2147483647
* 那么,将它进行左移一位以后,得到的结果是什么呢?
#include <stdio.h>
int main() {
int x = 0b10000000000000000000000000000001;
printf(“%d\n”, x << 1);
return 0;
}

* 我们盲猜一下,最高位的 1 被移出去,最低位补上 0,结果应该是`0b10`。
* 实际输出的结果,的确是:
2
* 但是如果按照
x
×
2
y
x \times 2^y
x×2y 答案应该是
(
−
2
31
+
1
)
×
2
=
−
2
32
+
2
(-2^{31}+1) \times 2 = -2^{32}+2
(−231+1)×2=−232+2
* 这里又回到了补码的问题上,事实上,在计算机中,`int`整型其实是一个环,溢出以后又会回来,而环的长度正好是
2
32
2^{32}
232,所以
−
2
32
+
2
=
2
-2^{32}+2 = 2
−232+2=2,这个就有点像同余的概念,这两个数是模
2
32
2^{32}
232 同余的。更多关于同余的知识,可以参考我的算法系列文章:[夜深人静写算法(三)- 初等数论入门](https://bbs.csdn.net/topics/618545628)(学生党记得找我开试读)。
## 二、左移运算符的应用
### 1、取模转化成位运算
* 对于
x
x
x 模上一个 2 的次幂的数
y
y
y,我们可以转换成位与上
2
y
−
1
2^y-1
2y−1。
* 即在数学上的:
* x
m
o
d
2
y
x \ mod \ 2^y
x mod 2y
* 在计算机中就可以用一行代码表示:`x & ((1 << y) - 1)`。
### 2、生成标记码
>
> 我们可以用左移运算符来实现标记码,即`1 << k`作为第
>
>
>
>
> k
>
>
>
> k
>
>
> k 个标记位的标记码,这样就可以通过一句话,实现对标记位置 0、置 1、取反等操作。
>
>
>
#### 1)标记位置1
>
> 【例题1】对于
>
>
>
>
> x
>
>
>
> x
>
>
> x 这个数,我们希望对它二进制位的第
>
>
>
>
> k
>
>
>
> k
>
>
> k 位(从0开始,从低到高数)置为 1。
>
>
>
* 置 1 操作,让我们联想到了 位或 运算。
* 它的特点是:位或上 1,结果为 1;位或上0,结果不变。
* 所以我们对标记码的要求是:第
k
k
k 位为 1,其它位为 0,正好是`(1 << k)`,那么将 第
k
k
k 位 置为 1 的语句可以写成:`x | (1 << k)`。
* 有关位或运算的更多内容,可以参考:[光天化日学C语言(15)- 位运算 | 的应用](https://bbs.csdn.net/topics/618545628)。
#### 2)标记位置0
>
> 【例题2】对于
>
>
>
>
> x
>
>
>
> x
>
>
> x 这个数,我们希望对它二进制位的第
>
>
>
>
> k
>
>
>
> k
>
>
> k 位(从0开始,从低到高数)置为 0。
>
>
>
* 置 0 操作,让我们联想到了 位与 运算。
* 它的特点是:位与上 0,结果为 0;位与上 1,结果不变。
* 所以在我们对标记码的要求是:第
k
k
k 位为 0,其它位为 1,我们需要的是`(~(1 << k))`,那么将 第
k
k
k 位 置为 0 的语句可以写成:`x & (~(1 << k))`。
* 有关位与运算的更多内容,可以参考:[光天化日学C语言(14)- 位运算 & 的应用](https://bbs.csdn.net/topics/618545628)。
* 有关 按位取反 运算的更多内容,可以参考:[光天化日学C语言(17)- 位运算 ~ 的应用](https://bbs.csdn.net/topics/618545628)。
#### 3)标记位取反
>
> 【例题3】对于
>
>
>
>
> x
>
>
>
> x
>
>
> x 这个数,我们希望对它二进制位的第
>
>
>
>
> k
>
>
>
> k
>
>
> k 位(从0开始,从低到高数)取反。
>
>
>
* 取反操作,联想到的是 异或 运算。
* 它的特点是:异或上 1,结果取反;异或上 0,结果不变。
* 所以我们对标记码的要求是:第
k
k
k 位为1,其余位为 0,其值为`(1 << k)`。那么将 第
k
k
k 位 取反的语句可以写成:`x ^ (1 << k)`。
* 有关 异或 运算的更多内容,可以参考:[光天化日学C语言(16)- 位运算 ^ 的应用](https://bbs.csdn.net/topics/618545628)。
### 3、生成掩码
* 同样,我们可以用左移来生成一个掩码,完成对某个数的二进制末
k
k
k 位执行一些操作。
* 对于`(1 << k)`的二进制表示为:1 加上 k 个 0,那么 `(1 << k) - 1`的二进制则代表
k
k
k 个 1。
* 把末尾的
k
k
k 位都变成 1,可以写成:`x | ((1 << k) - 1)`。
* 把末尾的
k
k
k 为都变成 0,可以写成:`x & ~((1 << k) - 1)`。
* 把末尾的
k
k
k 位都取反,可以写成:`x ^ ((1 << k) - 1)`。
---

>
> 通过这一章,我们学会了:
> 1)位运算 << 的用法;
> 2)用 << 来生成标记位;
> 3)用 << 来生成掩码;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第43题】左移的应用 | 一句话判断一个数是否是 2 的幂](https://bbs.csdn.net/topics/618545628)
---
**(19)- 位运算 >> 的应用**
## 一、右移运算符
### 1、右移的二进制形态
* 右移运算符是一个二元的位运算符,也就是有两个操作数,表示为`x >> y`。其中`x`和`y`均为整数。
* `x >> y`念作:“将
x
x
x 右移
y
y
y 位”,这里的位当然就是二进制位了,那么它表示的意思也就是:先将
x
x
x 用二进制表示,对于正数,右移
y
y
y 位;对于负数,右移
y
y
y 位后高位都补上 1。
* 举个例子:对于二进制数
8
7
10
=
(
1010111
)
2
87\_{10} = (1010111)\_2
8710=(1010111)2 左移
y
y
y 位的结果就是:
(
1010
)
2
(1010)\_2
(1010)2
### 2、右移的执行结果
* `x >> y`的执行结果等价于:
* ⌊
x
2
y
⌋
\lfloor \frac x {2^y} \rfloor
⌊2yx⌋
* 其中
⌊
a
⌋
\lfloor a\rfloor
⌊a⌋ 代表对
a
a
a 取下整。
* 如下代码:
#include <stdio.h>
int main() {
int x = 0b1010111;
int y = 3;
printf(“%d\n”, x >> y);
return 0;
}
* 输出结果为:
10
* 正好符合这个右移运算符的实际含义:
* 10
=
⌊
87
2
3
⌋
10 = \lfloor \frac {87} {2^3} \rfloor
10=⌊2387⌋
>
> 由于除法可能造成不能整除,所以才会有 取下整 这一步运算。
>
>
>
### 3、负数右移的执行结果
* 所谓负数右移,就是`x >> y`中,当`x`为负数的情况,代码如下:
#include <stdio.h>
int main() {
printf(“%d\n”, -1 >> 1);
return 0;
}
* 它的输出如下:
-1
* 我们发现同样是满足
⌊
x
2
y
⌋
\lfloor \frac x {2^y} \rfloor
⌊2yx⌋ 的(注意,负数的 取下整 和 正数 是正好相反的),这个可以用补码来解释,`-1`的补码为:
* 11111111
11111111
11111111
11111111
11111111 \ 11111111 \ 11111111 \ 11111111
11111111 11111111 11111111 11111111
* 右移一位后,由于是负数,高位补上 1,得到:
* 11111111
11111111
11111111
11111111
11111111 \ 11111111 \ 11111111 \ 11111111
11111111 11111111 11111111 11111111
* 而这,正好是 `-1`的补码,同样,继续右移 1 位,得到:
>
> 可以理解成 `- (x >> y)`和`(-x) >> y`是等价的。
>
>
>

>
> 【例题1】要求不运行代码,肉眼看出这段代码输出多少。
>
>
>
#include <stdio.h>
int main() {
int x = (1 << 31) | (1 << 30) | 1;
int y = (1 << 31) | (1 << 30) | (1 << 29);
printf(“%d\n”, (x >> 1) / y);
return 0;
}
### 4、右移负数位是什么情况
* 刚才我们讨论了
x
<
0
x < 0
x<0 的情况,那么接下来,我们试下
y
<
0
y < 0
y<0 的情况会是如何?
* 是否同样满足:
⌊
x
2
y
⌋
\lfloor \frac x {2^y} \rfloor
⌊2yx⌋ 呢?
* 如果还是满足,那么两个整数的左移就有可能产生小数了。
* 看个例子:
#include <stdio.h>
int main() {
printf(“%d\n”, 1 >> -1); // 2
printf(“%d\n”, 1 >> -2); // 4
printf(“%d\n”, 1 >> -3); // 8
printf(“%d\n”, 1 >> -4); // 16
printf(“%d\n”, 1 >> -5); // 32
printf(“%d\n”, 1 >> -6); // 64
printf(“%d\n”, 1 >> -7); // 128
return 0;
}
* 虽然能够正常运行,但是结果好像不是我们期望的,而且会报警告如下:
>
> [Warning] right shift count is negative [-Wshift-count-negative]
>
>
>
* 实际上,编辑器告诉我们尽量不用右移的时候用负数,但是它的执行结果不能算错误,起码例子里面对了。
* 右移负数位其实效果和左移对应正数数值位一致。
## 二、右移运算符的应用
### 1、去掉低 k 位
>
> 【例题2】给定一个数
>
>
>
>
> x
>
>
>
> x
>
>
> x,去掉它的低
>
>
>
>
> k
>
>
>
> k
>
>
> k 位以后进行输出。
>
>
>
* 这个问题,可以直接通过右移来完成,如下:`x >> k`。
### 2、取低位连续 1
>
> 【例题3】获取一个数
>
>
>
>
> x
>
>
>
> x
>
>
> x 低位连续的 1 并且输出。
>
>
>
* 对于一个数
x
x
x,假设低位有连续
k
k
k 个 1。如下:
* (
.
.
.
0
1...1
⏟
k
)
2
(...0\underbrace{1...1}\_{\rm k})\_2
(...0k
1...1)2
* 然后我们将它加上 1 以后,得到的就是:
* (
.
.
.
1
0...0
⏟
k
)
2
(...1\underbrace{0...0}\_{\rm k})\_2
(...1k
0...0)2
* 这时候将这两个数异或结果为:
* (
1...1
⏟
k
+
1
)
2
(\underbrace{1...1}\_{\rm {k+1}})\_2
(k+1
1...1)2
* 这时候,再进行右移一位,就得到了 连续
k
k
k 个 1 的值,也正是我们所求。
* 所以可以用以下语句来求:`(x ^ (x + 1)) >> 1`。
### 3、取第k位的值
>
> 【例题4】获取一个数
>
>
>
>
> x
>
>
>
> x
>
>
> x 的第
>
>
>
>
> k
>
>
> (
>
>
> 0
>
>
> ≤
>
>
> k
>
>
> ≤
>
>
> 30
>
>
> )
>
>
>
> k(0 \le k \le 30)
>
>
> k(0≤k≤30) 位的值并且输出。
>
>
>
* 对于二进制数来说,第
k
k
k 位的值一定是 0 或者 1。
* 而 对于 1 到
k
−
1
k-1
k−1 位的数字,对于我们来说是没有意义的,我们可以用右移来去掉,再用位与运算符来获取二进制的最后一位是 0 还是 1,如下:`(x >> k) & 1`。
---

>
> 通过这一章,我们学会了:
> 1)位运算 >> 的用法;
> 2)用 >> 来取低位连续 1;
> 3)用 >> 取第
>
>
>
>
> k
>
>
>
> k
>
>
> k 位的值;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第44题】右移的应用 | (更新中)](https://bbs.csdn.net/topics/618545628)
---
**(20)- 赋值运算符**
## 一、赋值运算符概览
### 1、赋值运算符
* 今天我们来讲一下赋值运算符。
* 对于赋值运算符,主要分为两类:简单赋值运算符 和 复合赋值运算符。如下图所示:

* 简单赋值运算符,我们之前在讲 [光天化日学C语言(03)- 变量](https://bbs.csdn.net/topics/618545628) 的时候就已经遇到了,它的表示形式如下:
变
量
=
常
量
变
量
=
表
达
式
\begin{aligned}变量 &= 常量 \\ 变量 &= 表达式\end{aligned}
变量变量=常量=表达式
* 即将赋值符号`=`右边的操作数的值赋值给左边的操作数。
### 2、赋值表达式
* 类似这样的表达式,我们称之为 **赋值表达式**。
* 例如:
a = 10189;
a = a + 5;
* 任何表达式都是有值的,赋值表达式也不例外,它的值就是`=`右边的值。
* 试想一下这段代码的输出是多少?
#include <stdio.h>
int main() {
int a = 5;
int b = (a = 5);
printf(“%d\n”, b);
return 0;
}

* 运行结果为:
5
* 原因就是因为表达式`a = 5`的值为`5`,从而等价于`b = 5`。
### 3、赋值运算的自动类型转换
* 赋值运算符会进行**自动类型转换**,转换类型就是左边操作数的类型。
#include <stdio.h>
int main() {
int a = 0;
a = a + 1.5;
printf(“%d\n”, a);
return 0;
}
* 输出的结果为:
1
* 有关类型转换的内容,可以参考 [光天化日学C语言(12)- 类型转换](https://bbs.csdn.net/topics/618545628)。
### 4、连续赋值
* 我们来看一个例子,如下:
#include <stdio.h>
int main() {
int a, b, c, d = 0;
a = b = c = d = d == 0;
printf(“%d\n”, a);
return 0;
}
* 这段代码的运行结果为:
1
* 为什么呢?
* 它其实等价于:
#include <stdio.h>
int main() {
int a, b, c, d = 0;
a = ( b = (c = ( d = (d == 0) ) ) );
printf(“%d\n”, a);
return 0;
}
* 这里涉及到两个概念:运算符优先级、运算符结合性。
* 具体的内容,我们会在后续内容中详细讲解。现在你只需要知道 赋值运算符`=`的优先级低于关系运算符`==`,所以`d = d == 0`等价于`d = (d == 0)`;而赋值运算符`=`的结合性是从右到左,所以`a = b = c`等价于`a = (b = c)`。
## 二、复合赋值运算符
* 首先来看一个赋值语句,如下:
int love;
love = love + 1314;
* 像这种**表达式左边的变量**重复出现在**表达式的右边**,则可以缩写成:
int love;
love += 1314;
* 而这里的`+=`就是复合赋值运算符,类似的复合赋值运算符还有很多,总共分为两大类:算术赋值运算符、位赋值运算符。
### 1、算术赋值运算符
* 算术运算符我们之前已经了解过了,具体可以参考这篇文章:[光天化日学C语言(09)- 算术运算符](https://bbs.csdn.net/topics/618545628)。
* 而算术赋值运算符就是先进行算术运算,再进行赋值。算术赋值运算符的表格如下:
| 运算符 | 简称 | 描述 | 举例 |
| --- | --- | --- | --- |
| `+=` | 加且赋值运算符 | 将 **右边操作数** 加上 **左边操作数** 的结果赋值给 **左边操作数** | `a += b`等价于`a = a + b` |
| `-=` | 减且赋值运算符 | 将 **左边操作数** 减去 **右边操作数** 的结果赋值给 **左边操作数** | `a -= b`等价于`a = a - b` |
| `*=` | 乘且赋值运算符 | 将 **右边操作数** 乘以 **左边操作数** 的结果赋值给 **左边操作数** | `a *= b`等价于`a = a * b` |
| `/=` | 除且赋值运算符 | 将 **左边操作数** 除以 **右边操作数** 的结果赋值给 **左边操作数** | `a /= b`等价于`a = a / b` |
| `%=` | 求模且赋值运算符 | 求 **两个操作数的模**,并将结果赋值给 **左边操作数** | `a %= b`等价于`a = a % b` |
### 2、位赋值运算符
* 位运算符我们之前已经了解过了,具体可以参考这篇文章:[光天化日学C语言(13)- 位运算概览](https://bbs.csdn.net/topics/618545628)。
* 而位赋值运算符就是先进行位运算,再进行赋值。位赋值运算符的表格如下:
| 运算符 | 简称 | 描述 | 举例 |
| --- | --- | --- | --- |
| `&=` | 按位与且赋值运算符 | 将 **左边操作数** 按位与上 **右边操作数** 的结果赋值给 **左边操作数** | `a &= b`等同于`a = a & b` |
| `|=` | 按位或且赋值运算符 | 将 **左边操作数** 按位或上 **右边操作数** 的结果赋值给 **左边操作数** | `a |= b`等同于`a = a | b` |
| `^=` | 按位异或且赋值运算符 | 将 **左边操作数** 按位异或上 **右边操作数** 的结果赋值给 **左边操作数** | `a ^= b`等同于`a = a ^ b` |
| `<<=` | 左移且赋值运算符 | 将 **左边操作数** 左移 **右边操作数** 的位数后的结果赋值给 **左边操作数** | `a <<= b`等同于`a = a << b` |
| `>>=` | 右移且赋值运算符 | 将 **左边操作数** 右移 **右边操作数** 的位数后的结果赋值给 **左边操作数** | `a >>= b`等同于`a = a >> b` |
## 三、复合赋值表达式
* 对于两个表达式
e
1
e\_1
e1 和
e
2
e\_2
e2,有复合赋值表达式:
* e
1
o
p
=
e
2
e\_1 \ \_{op=} \ e\_2
e1 op= e2
* 等价于:
* e
1
=
(
e
1
)
o
p
(
e
2
)
e\_1 = (e\_1) \ \_{op} \ (e\_2)
e1=(e1) op (e2)
* 其中
o
p
op
op 就是上文提到的那 10 个 复合赋值运算符。
>
> 这样写的好处有三个:
> 1)前一种形式,
>
>
>
>
>
> e
>
>
> 1
>
>
>
>
> e\_1
>
>
> e1 只计算一次;第二种形式要计算两次。
> 2)前一种形式,不需要加上圆括号;第二种形式的圆括号不可少。
> 3)看起来简洁清晰;
>
>
>
* 举个极端的例子:
* `a.b.c.d.e.f[ 1024 + g.h.i.j.k.l ] = a.b.c.d.e.f[ 1024 + g.h.i.j.k.l ] + 5`
炸裂的🤣🤣🤣!!!
* 利用复合赋值表达式,我们就可以写成:`a.b.c.d.e.f[ 1024 + g.h.i.j.k.l ] += 5`(当然,这个例子比较极端,实际编码中千万不要写出这样的代码哦)。
---

>
> 通过这一章,我们学会了:
> 1)赋值运算符;
> 2)赋值表达式;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第15题】给定一个整数,对它进行逆序输出 | 完美的栈思想](https://bbs.csdn.net/topics/618545628)
---
**(21)- 逗号运算符**
## 一、逗号运算符
* 今天,我们就来看下逗号运算符和逗号表达式吧。
* 在 C语言 中,可以把多个表达式用逗号连接起来,构成一个更大的表达式。其中的逗号称为 **逗号运算符**,所构成的表达式称为 **逗号表达式**。逗号表达式中用逗号分开的表达式分别求值,以最后一个表达式的值作为整个表达式的值。
>
> 简单来说,逗号表达式遵循两点原则:
> 1)以逗号分隔的表达式单独计算;
> 2)逗号表达式的值为最后一个表达式的值;
>
>
>
## 二、逗号运算符的应用
### 1、连续变量定义
* 逗号运算通常用于变量的连续定义,如下:
#include <stdio.h>
int main() {
int a = 1, b = 2, c = 3, d = 1 << 6, e;
printf(“%d\n”, a + b + c + d);
return 0;
}
* 这里的`int a = 1, b = 2, c = 3, d = 1 << 6, e`就是逗号表达式。
### 2、循环语句赋初值
* 逗号运算通常用于`for`结构的括号内的第一个表达式,用于给多个局部变量赋值。
* 一段对 `1`到 `10`的数求立方和的代码,如下:
#include <stdio.h>
int main() {
int i, s;
for(i = 1, s = 0; i <= 10; ++i) {
s += i*i*i;
}
printf(“%d\n”, s);
return 0;
}
* 这里的`i = 1, s = 0`就是逗号表达式。
* 有关于`for`的内容,会在后面的章节来介绍,暂时只需要知道可以使用逗号表达式来对一些变量赋予初值。
### 3、交换变量
* 我们在实现交换变量的时候,往往需要三句话:
int tmp;
tmp = a;
a = b;
b = tmp;
* 有了逗号表达式,我们就可以这么写:
int tmp;
tmp = a, a = b, b = tmp;

## 三、逗号运算符注意事项
* 需要注意的是,逗号运算符的优先级非常低,甚至比赋值运算符还要低,所以当它和赋值运算符相遇时,是优先计算赋值运算的,如下代码所示:
#include <stdio.h>
int main() {
int x, y, a, b;
a = (1, x = 2, y = 3);
b = 1, x = 9, y = 3;
printf(“%d %d\n”, a, b);
return 0;
}
* 这段代码中`a`和`b`的的赋值,只差了一个括号,但是结果截然不同。
* 输出的结果为:
3 1
* 原因是因为`(1, x = 2, y = 3)`表达式的值为以逗号分隔的最后一个表达式的值,即`3`;而在`b = 1, x = 9, y = 3`中,由于逗号运算符的优先级很低,导致表达式分成了三部分:`b = 1`、`x = 9`、`y = 3`,所以才有
a
=
3
a=3
a=3,
b
=
1
b=1
b=1。
---

>
> 通过这一章,我们学会了:
> 1)逗号运算符;
> 2)逗号表达式;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第32题】给定一个字符串,原地对它进行翻转并输出](https://bbs.csdn.net/topics/618545628)
---
**(22)- 运算符优先级和结合性**
## 一、运算符简介
* 运算符用于执行程序代码运算,会针对一个、两个或多个操作数来进行运算。例如:1 + 2,其操作数是 1 和 2,而运算符则是 “+”(加号)。
* C语言把除了 **控制语句** 和 **输入输出** 以外的几乎所有的基本操作都作为运算符处理,可见一斑。
## 二、运算符分类
* 将按功能分类,可以分为:后缀运算符、单目运算符、算术运算符、关系运算符、位运算符、逻辑运算符、条件运算符、赋值运算符、逗号运算符。

* 在之前的章节也有介绍了很多运算符,这里简单做个总结:
| 运算符类型 | 运算符举例 | 参考文章 |
| --- | --- | --- |
| 后缀运算符 | `[]`下标运算 | 会在数组章节讲解,待更新 |
| 单目运算符 | `(type)`强制转换 | [光天化日学C语言(12)- 类型转换](https://bbs.csdn.net/topics/618545628) |
| 算术运算符 | `+`加号 | [光天化日学C语言(09)- 算术运算符](https://bbs.csdn.net/topics/618545628) |
| 移位运算符 | `<<`左移 | [光天化日学C语言(18)- 位运算 << 的应用](https://bbs.csdn.net/topics/618545628) |
| 关系运算符 | `<`小于 | [光天化日学C语言(10)- 关系运算符](https://bbs.csdn.net/topics/618545628) |
| 双目位运算符 | `&`位与 | [光天化日学C语言(14)- 位运算 & 的应用](https://bbs.csdn.net/topics/618545628) |
| 双目逻辑运算符 | `&&` | [光天化日学C语言(11)- 逻辑运算符](https://bbs.csdn.net/topics/618545628) |
| 条件运算符 | `? :` | 会在`if`语句章节讲解,待更新 |
| 赋值运算符 | `<<=`左移后赋值 | [光天化日学C语言(20)- 赋值运算符与赋值表达式](https://bbs.csdn.net/topics/618545628) |
| 逗号运算符 | `,`逗号 | [光天化日学C语言(21)- 逗号运算符](https://bbs.csdn.net/topics/618545628) |
## 三、运算符的优先级和结合性
### 1、运算符优先级表
| 优先级 | 运算符 | 名称 | 形式 | 举例 |
| --- | --- | --- | --- | --- |
| 1 | `[]` | 数组下标 | 数组名[常量表达式] | `a[2]` |
| 1 | `()` | 圆括号 | (表达式) 或 函数名(形参表) | `(a+1)` |
| 1 | `.` | 对象的成员选择 | 对象.成员名 | `a.b` |
| 1 | `->` | 指针的成员选择 | 指针.成员名 | `a->b` |
| 2 | `+` | 正号 | +表达式 | `+5` |
| 2 | `-` | 负号 | -表达式 | `-5` |
| 2 | `(type)` | 强制类型转换 | (数据类型)表达式 | `(int)a` |
| 2 | `++` | 自增运算符 | ++变量名 / 变量名++ | `++i` |
| 2 | `--` | 自增运算符 | –变量名 / 变量名– | `--i` |
| 2 | `!` | 逻辑非 | !表达式 | `!a[0]` |
| 2 | `~` | 按位取反 | ~表达式 | `~a` |
| 2 | `&` | 取地址 | &变量名 | `&a` |
| 2 | `*` | 解引用 | \*指针变量名 | `*a` |
| 2 | `sizeof` | 取长度 | sizeof(表达式) | `sizeof(a)` |
| 3 | `*` | 乘 | 表达式 \* 表达式 | `3 * 5` |
| 3 | `/` | 除 | 表达式 / 表达式 | `3 / 5` |
| 3 | `%` | 模 | 整型表达式 % 整型非零表达式 | `3 % 5` |
| 4 | `+` | 加 | 表达式 + 表达式 | `a + b` |
| 4 | `-` | 减 | 表达式 - 表达式 | `a - b` |
| 5 | `<<` | 左移 | 变量<<表达式 | `1<<5` |
| 5 | `>>` | 右移 | 变量>>表达式 | `x>>1` |
| 6 | `<` | 小于 | 表达式<表达式 | `1 < 2` |
| 6 | `<=` | 小于等于 | 表达式<=表达式 | `1 <= 2` |
| 6 | `>` | 大于 | 表达式>表达式 | `1 > 2` |
| 6 | `>=` | 大于等于 | 表达式>=表达式 | `1 >= 2` |
| 7 | `==` | 等于 | 表达式==表达式 | `1 == 2` |
| 7 | `!=` | 不等于 | 表达式!=表达式 | `1 != 2` |
| 8 | `&` | 等于 | 表达式&表达式 | `1 & 2` |
| 9 | `^` | 等于 | 表达式^表达式 | `1 ^ 2` |
| 10 | `|` | 等于 | 表达式\表达式 | `1 | 2` |
| 11 | `&&` | 逻辑与 | 表达式&&表达式 | `a && b` |
| 12 | `||` | 逻辑与 | 表达式`||`表达式 | `a || b` |
| 13 | `?:` | 条件运算符 | 表达式1? 表达式2: 表达式3 | `a>b?a:b` |
| 14 | `=` | 赋值 | 变量=表达式 | `a = b` |
| 14 | `+=` | 加后赋值 | 变量+=表达式 | `a += b` |
| 14 | `-=` | 减后赋值 | 变量-=表达式 | `a -= b` |
| 14 | `*=` | 乘后赋值 | 变量\*=表达式 | `a *= b` |
| 14 | `/=` | 除后赋值 | 变量/=表达式 | `a /= b` |
| 14 | `%=` | 模后赋值 | 变量%=表达式 | `a %= b` |
| 14 | `>>=` | 右移后赋值 | 变量>>=表达式 | `a >>= b` |
| 14 | `<<=` | 左移后赋值 | 变量<<=表达式 | `a <<= b` |
| 14 | `&=` | 位与后赋值 | 变量&=表达式 | `a &= b` |
| 14 | `^=` | 异或后赋值 | 变量^=表达式 | `a ^= b` |
| 14 | `|=` | 位或后赋值 | 变量`|=`表达式 | `a |= b` |
| 15 | `,` | 逗号运算符 | 表达式1,表达式2,… | `a+b,a-b` |
### 2、结合性
>
> 结合方向只有 **3** 个是 **从右往左**,其余都是 **从左往右**(比较符合人的直观感受)。
> (1)一个是单目运算符;
> (2)一个是双目运算符中的 赋值运算符;
> (3)一个条件运算符,也就是C语言中唯一的三目运算符。
>
>
>
### 3、优先级
>
> 后缀运算符和单目运算符优先级一般最高,逗号运算符的优先级最低。快速记忆如下:
>
>
>
> 单目逻辑运算符 > 算术运算符 > 关系运算符 > 双目逻辑运算符 > 赋值运算符
>
>
>
## 四、运算符的优先级和结合性举例
---
**🧡例题1🧡**
#include <stdio.h>
int main() {
int a = 1, b = 2, c = 3;
a <<= b <<= c;
printf(“%d\n”, a );
return 0;
}
>
> 【运行结果】65536
> 【结果答疑】`a <<= b <<= c`的计算方式等价于`a = (a << (b << c))`,结果为`1 << 16`。
>
>
>
---
**🧡例题2🧡**
#include <stdio.h>
int main() {
int a = 1, b = 2;
printf(“%d\n”, a > b ? a + b : a - b );
return 0;
}
>
> 【运行结果】-1
> 【结果答疑】条件运算符的优先级较低,低于关系运算符和算术运算符,所以`a > b ? a + b : a - b`等价于`1 > 2 ? 3 : -1`。
>
>
>
---
**🧡例题3🧡**
#include <stdio.h>
int main() {
int a = 1;
–a && --a;
printf(“%d\n”, a);
return 0;
}
>
> 【运行结果】0
> 【结果答疑】这个例子是展示逻辑与运算符`&&`从左往右计算过程中,一旦遇到 0 就不再进行运算了,所以`--a`实际上只执行了一次。
>
>
>
---
**🧡例题4🧡**
#include <stdio.h>
int main() {
int x = 0b010000;
printf(“%d\n”, x | x - 1 );
return 0;
}
>
> 【运行结果】31
> 【结果答疑】这个例子是是将低位连续的零变成一,但是一般这样的写法会报警告,因为编译程序并不知道你的诉求,到底是想先计算 | 还是先计算 `-`,由于这个问题我们实际要计算的是`x | (x - 1)`,并且减法运算符`-`优先级高于位或运算符 | ,所以括号是可以省略的。
>
>
>
---
**🧡例题5🧡**
#include <stdio.h>
int main() {
int a = 0b1010;
int b = 0b0101;
int c = 0b1001;
printf(“%d\n”, a | b ^ c );
return 0;
}
>
> 【运行结果】14
> 【结果答疑】这个例子表明了异或运算符`^`高于位或运算符 | 。
>
>
>
---
**🧡例题6🧡**
#include <stdio.h>
int main() {
int a = 0b1010;
int b = 0b0110;
printf(“%d\n”, a & b == 2);
return 0;
}
>
> 【运行结果】0
> 【结果答疑】延续【例题59】继续看,之前`a & b`输出的是`2`,那为什么加上等于`==`判定后,输出结果反而变成`0`了呢?原因是因为`==`的优先级高于位与`&`,所以相当于进行了`a & 0`的操作,结果自然就是0了。
>
>
>
---

>
> 通过这一章,我们学会了:
> 1)运算符的优先级;
> 2)运算符的结合性;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第13题】给定三个数 a,b,c,从小到大输出这三个数](https://bbs.csdn.net/topics/618545628)
---
**第三章**
**数据类型的存储方式**
**(23)- 整数的存储**
## 一、整数简介
### 1、符号位 和 数值位
* 我们知道 整数 分为 有符号整型 和 无符号整型。
* 有符号整型,程序需要区分 **符号位** 和 **数值位**。
* 对我们人类来说,很容易分辨;而对计算机而言,就要设计专门的电路,这就增加了硬件的复杂性,从而增加了计算的时间。
>
> 所以,如果能够将 **符号位** 和 **数值位** 联合起来,让它们共同参与运算,不再加以区分,这样硬件电路就会变得更加简单。
>
>
>
### 2、整型的加减运算
* 其次,**加法** 和 **减法** 的引入,也将问题变得复杂。而由于减去一个数相当于加上这个数的相反数,例如:`1 - 2`等价于 `1 + (-2)`,`1 - (-2)`等价于`1 + 2`。
>
> 所以,它们可以合并为一种运算,即只保留加法运算。
>
>
>
* 相反数是指 数值位 相同,符号位 不同的两个数,例如,1 和 -1 就是一对相反数。
---
* 所以,我们需要做的就是设计一种简单的、不用区分符号位和数值位的加法电路,就能同时实现加法和减法运算。首先让我们看几个计算机中的概念。

## 二、机器数和真值
### 1、机器数
* 我们知道计算机是内部由 0 和 1 组成的编码,无论是整数还是浮点数,都会涉及到负数,对于机器来说是不知道正负的,而 “正” 和 “负” 正好是两种对立的状态,所以规定用 “0” 表示 “正”,“1” 表示 “负”,这样符号就被数字化了,并且将它放在有效数字的前面,就成了有符号数;
* 把符号 “数字化” 的数称为 机器数;
### 2、真值
* 而带有 “+” 或者 “-” 的数称为 真值;
* 然而,当符号位和数值部分放在一起后,如何让它一起参与运算呢?那就要涉及到接下来要讲的计算机的各种编码了。
## 三、计算机编码

### 1、原码
#### 1)定义
* 这里的原码并不是源码(源代码)的意思,而是机器数中最简单的一种表示形式;为了快速理解,这里只介绍 32位整数;
>
> **【定义】** **符号位** 为 **0** 代表 **正数**,**符号位** 为 **1** 代表 **负数**,**数值位** 为 **真值的绝对值**。
>
>
>
#### 2)举例
* 1)对于十进制数 37,它的 真值 和 原码 关系如下:
真值:+ 00000000 00000000 00000000 00100101
原码: 00000000 00000000 00000000 00100101
* 2)对于十进制数 -37,它的 真值 和 原码 的关系如下:
真值:- 00000000 00000000 00000000 00100101
原码: 10000000 00000000 00000000 00100101
* 我们发现,对于负数的情况,原码 加上 真值(注意,这里真值为负数)后,二进制数正好等于
1
(
0...0
⏟
31
)
2
1(\underbrace{0...0}\_{31})\_2
1(31
0...0)2, 即
2
31
2^{31}
231,表示成公式如下:
[
x
]
原
+
x
=
2
31
[x]\_原 + x = 2^{31}
[x]原+x=231
#### 3)公式
* 因此,我们可以通过移项,得出原码的十进制计算公式如下:
>
>
>
>
>
>
> [
>
>
> x
>
>
>
> ]
>
>
> 原
>
>
>
> =
>
>
>
> {
>
>
>
>
>
>
> x
>
>
>
>
>
>
>
> (
>
>
> 0
>
>
> ≤
>
>
> x
>
>
> <
>
>
>
> 2
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
>
> )
>
>
>
>
>
>
>
>
>
>
>
> 2
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
>
> −
>
>
> x
>
>
>
>
>
>
>
>
> (
>
>
> −
>
>
>
> 2
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
>
> <
>
>
> x
>
>
> ≤
>
>
> 0
>
>
> )
>
>
>
>
>
>
>
>
>
> [x]\_原 = \begin{cases} x & (0 \le x < 2^{n-1})\\ 2^{n-1} - x & (-2^{n-1} < x \le 0) \end{cases}
>
>
> [x]原={x2n−1−x(0≤x<2n−1)(−2n−1<x≤0) 这里
>
>
>
>
> x
>
>
>
> x
>
>
> x 代表真值,而
>
>
>
>
> n
>
>
>
> n
>
>
> n 的取值是
>
>
>
>
> 8
>
>
> 、
>
>
> 16
>
>
> 、
>
>
> 32
>
>
> 、
>
>
> 64
>
>
>
> 8、16、32、64
>
>
> 8、16、32、64,我们通常说的整型`int`都是 32位 的,本文就以
>
>
>
>
> n
>
>
> =
>
>
> 32
>
>
>
> n = 32
>
>
> n=32 的情况进行阐述;
>
>
>
* 原码是最贴近人类的编码方式,并且很容易和真值进行转换,但是让计算机用原码进行加减运算过于繁琐,如果两个数符号位不同,需要先判断绝对值大小,然后用绝对值大的减去绝对值小的,并且符号以绝对值大的数为准,本来是加法却需要用减法来实现。
---
### 2、反码

#### 1)定义
>
> **【定义】** **正数** 的 **反码** 就是它的 **原码**;**负数** 的 **反码** 为 **原码** 的每一位的 **0变1**、**1变0**(即位运算中的按位取反);
>
>
>
#### 2)举例
* 1)对于十进制数 37,它的 真值 和 反码 关系如下:
真值:+ 00000000 00000000 00000000 00100101
反码: 00000000 00000000 00000000 00100101
* 2)对于十进制数 -37,它的 真值 和 反码 的关系如下:
真值:- 00000000 00000000 00000000 00100101
反码: 11111111 11111111 11111111 11011010
* 我们发现,对于负数的情况,反码 减去 真值(注意,这里真值为负数)后,负负得正,转换成二进制位相加正好等于
(
1...1
⏟
32
)
2
(\underbrace{1...1}\_{32})\_2
(32
1...1)2, 即
2
32
−
1
2^{32}-1
232−1,表示成公式如下:
[
x
]
反
−
x
=
2
32
−
1
[x]\_反 - x = 2^{32}-1
[x]反−x=232−1
#### 3)公式
* 因此,通过移项,我们可以得出反码的十进制计算公式如下:
>
>
>
>
>
>
> [
>
>
> x
>
>
>
> ]
>
>
> 反
>
>
>
> =
>
>
>
> {
>
>
>
>
>
>
> x
>
>
>
>
>
>
>
> (
>
>
> 0
>
>
> ≤
>
>
> x
>
>
> <
>
>
>
> 2
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
>
> )
>
>
>
>
>
>
>
>
>
>
>
> 2
>
>
> n
>
>
>
> −
>
>
> 1
>
>
> +
>
>
> x
>
>
>
>
>
>
>
>
> (
>
>
> −
>
>
>
> 2
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
>
> <
>
>
> x
>
>
> ≤
>
>
> 0
>
>
> )
>
>
>
>
>
>
>
>
>
> [x]\_反 = \begin{cases} x & (0 \le x < 2^{n-1})\\ 2^{n}-1 + x & (-2^{n-1} < x \le 0) \end{cases}
>
>
> [x]反={x2n−1+x(0≤x<2n−1)(−2n−1<x≤0) 这里
>
>
>
>
> x
>
>
>
> x
>
>
> x 代表真值,而
>
>
>
>
> n
>
>
>
> n
>
>
> n 的取值是
>
>
>
>
> 8
>
>
> 、
>
>
> 16
>
>
> 、
>
>
> 32
>
>
> 、
>
>
> 64
>
>
>
> 8、16、32、64
>
>
> 8、16、32、64,我们通常说的整型`int`都是 32位 的,本文就以
>
>
>
>
> n
>
>
> =
>
>
> 32
>
>
>
> n = 32
>
>
> n=32 的情况进行阐述;
>
>
>
* 反码有个很难受的点,就是
(
0
0...0
⏟
31
)
2
(0\underbrace{0...0}\_{31})\_2
(031
0...0)2 和
(
1
0...0
⏟
31
)
2
(1\underbrace{0...0}\_{31})\_2
(131
0...0)2 都代表零,就是我们常说的 正零 和 负零。正如公式中看到的,当真值为 0 的时候,有两种情况,这就产生了二义性,而且浪费了一个整数表示形式。
---
### 3、补码

#### 1)定义
>
> **【定义】** **正数** 的 **补码** 就是它的 **原码**;**负数** 的 **补码** 为 它的**反码加一**;
>
>
>
#### 2)举例
* 1)对于十进制数 37,它的 真值 和 补码 关系如下:
真值:+ 00000000 00000000 00000000 00100101
补码: 00000000 00000000 00000000 00100101
* 2)对于十进制数 -37,它的 真值 和 反码 的关系如下:
真值:- 00000000 00000000 00000000 00100101
补码: 11111111 11111111 11111111 11011011
* 我们发现,对于负数的情况,反码 减去 真值(注意,这里真值为负数)后,负负得正,转换成二进制位相加正好等于
1
(
0...0
⏟
32
)
2
1(\underbrace{0...0}\_{32})\_2
1(32
0...0)2, 即
2
32
2^{32}
232,表示成公式如下:
[
x
]
补
−
x
=
2
32
[x]\_补 - x = 2^{32}
[x]补−x=232
#### 3)公式
* 因此,通过移项,我们可以得出补码的十进制计算公式如下:
>
>
>
>
>
>
> [
>
>
> x
>
>
>
> ]
>
>
> 补
>
>
>
> =
>
>
>
> {
>
>
>
>
>
>
> x
>
>
>
>
>
>
>
> (
>
>
> 0
>
>
> ≤
>
>
> x
>
>
> <
>
>
>
> 2
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
>
> )
>
>
>
>
>
>
>
>
>
>
>
> 2
>
>
> n
>
>
>
> +
>
>
> x
>
>
>
>
>
>
>
>
> (
>
>
> −
>
>
>
> 2
>
>
>
> n
>
>
> −
>
>
> 1
>
>
>
>
> ≤
>
>
> x
>
>
> <
>
>
> 0
>
>
> )
>
>
>
>
>
>
>
>
>
> [x]\_补 = \begin{cases} x & (0 \le x < 2^{n-1})\\ 2^{n} + x & (-2^{n-1} \le x < 0) \end{cases}
>
>
> [x]补={x2n+x(0≤x<2n−1)(−2n−1≤x<0) 这里
>
>
>
>
> x
>
>
>
> x
>
>
> x 代表真值,而
>
>
>
>
> n
>
>
>
> n
>
>
> n 的取值是
>
>
>
>
> 8
>
>
> 、
>
>
> 16
>
>
> 、
>
>
> 32
>
>
> 、
>
>
> 64
>
>
>
> 8、16、32、64
>
>
> 8、16、32、64,我们通常说的整型`int`都是 32位 的,本文就以
>
>
>
>
> n
>
>
> =
>
>
> 32
>
>
>
> n = 32
>
>
> n=32 的情况进行阐述;
>
>
>
#### 4、编码总结
>
> 对于三种编码方式,总结如下:
> 1)这三种机器数的最高位均为符号位;
> 2)当真值为正数时,原码、反码、补码的表示形式相同,符号位用 “0” 表示,数值部分真值相同;
> 3)当真值为负数时,原码、反码、补码的表示形式不同,但是符号位都用 “1” 表示,数值部分:反码是原码的 “按位取反”,补码是反码加一;
>
>
>
**正数**
真值:+ 00000000 00000000 00000000 00100101
原码: 00000000 00000000 00000000 00100101
反码: 00000000 00000000 00000000 00100101
补码: 00000000 00000000 00000000 00100101
**负数**
真值:- 00000000 00000000 00000000 00100101
原码: 10000000 00000000 00000000 00100101
反码: 11111111 11111111 11111111 11011010
补码: 11111111 11111111 11111111 11011011
## 四、为什么要引入补码

* 最后,我们来讲一下引入补码的真实意图是什么。
#### 1、主要目的
* 计算机的四则运算希望设计的尽量简单。但是引入 **符号位** 的概念,对于计算机来说还要考虑正负数相加,等于引入了减法,所以希望是计算机底层 **只设计一个加法器**,就能把加法和减法都做了。
#### 2、原码运算
* 对于原码的加法,两个正数相加的情况如下:
+1 的原码:00000000 00000000 00000000 00000001
+1 的原码:00000000 00000000 00000000 00000001
+2 的原码:00000000 00000000 00000000 00000010
* 好像没有什么问题?于是人们开始探索减法,但是起初设计的人的初衷是希望不用减法,只用加法运算就能够将加法和减法都包含进来,于是,我们尝试用原码的负数表示来做运算;
* 将 `1 - 2`表示成`1 + (-2)`,然后用原码相加得到:
+1 的原码:00000000 00000000 00000000 00000001
-2 的原码:10000000 00000000 00000000 00000010
-3 的原码:10000000 00000000 00000000 00000011
* 我们发现`1 + (-2) = -3`,计算结果明显是错的,所以为了解决减法问题,引入了反码;
#### 3、反码运算
* 对于正数的加法,两个正数反码相加的情况和原码相加一致,不会有问题。
* 对于正数的减法,转换成一正一负两数相加。
* 将 `1 - 2`表示成`1 + (-2)`,情况如下:
+1 的反码:00000000 00000000 00000000 00000001
-2 的反码:11111111 11111111 11111111 11111101
-1 的反码:11111111 11111111 11111111 11111110
* 没有什么问题?但是某种情况下,反码会有歧义,当两个相同的数相减时,即`1 - 1`表示成`1 + (-1)`,情况 如下:
+1 的反码:00000000 00000000 00000000 00000001
-1 的反码:11111111 11111111 11111111 11111110
-0 的反码:11111111 11111111 11111111 11111111
* 这里出现了一个奇怪的概念,就是 “负零”,反码运算过程中会出现有两个编码表示零这个数值。
* 为了解决正负零的问题引入了补码的概念。
#### 4、补码运算
>
> 1)两个正数的补码相加。
>
>
>
* 其和等于 它们的原码相加,已经验证过,不会有问题;
>
> 2)一正一负两个数相加,且 **答案非零** 。
>
>
>
+1 的补码:00000000 00000000 00000000 00000001
-2 的补码:11111111 11111111 11111111 11111110
-1 的补码:11111111 11111111 11111111 11111111
* 结果正确;
>
> 3)一正一负两个数相加,且 **答案为零**。
>
>
>
+1 的补码 00000000 00000000 00000000 00000001
-1 的补码: 11111111 11111111 11111111 11111111
0 的补码:1 00000000 00000000 00000000 00000000
* 两个互为相反数的数相加后,得到的数的补码为
2
n
2^n
2n(可以认为是是溢出了),所以那个 1 根本不会被存进计算机中,也就是表现出来的结果就是 零!
* 而且,补码的这个运算,和我们之前提到的定义吻合。
* 综上所述,补码解决了整数加法带来的所有问题。
---

>
> 通过这一章,我们学会了:
> 1)原码的表示形式;
> 2)反码的表示形式;
> 3)补码的表示形式;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第11题】给出四个数,输出四个数的和 | 溢出了怎么办?](https://bbs.csdn.net/topics/618545628)
---
**(24)- 浮点数的存储**
## 一、浮点数简介
### 1、数学中的小数
* 数学中的小数分为整数部分和小数部分,它们由点号`.`分隔,我们将它称为 **十进制表示**。例如
0.0
0.0
0.0、
1314.520
1314.520
1314.520、
−
1.234
-1.234
−1.234、
0.0001
0.0001
0.0001 等都是合法的小数,这是最常见的小数形式。
* 小数也可以采用 **指数表示**,例如
1.23.
×
1
0
2
1.23.\times 10^2
1.23.×102、
0.0123
×
1
0
5
0.0123 \times 10^5
0.0123×105、
1.314
×
1
0
−
2
1.314 \times 10^{-2}
1.314×10−2 等。
### 2、C语言中的小数
* 在 C语言 中的小数,我们称为浮点数。
* 其中,十进制表示相同,而指数表示,则略有不同。
* 对于数学中的
a
×
1
0
n
a \times 10^n
a×10n。在C语言中的指数表示如下:
aEn 或者 aen
* 其中
a
a
a 为尾数部分,是一个十进制数;
n
n
n 为指数部分,是一个十进制整数;
E
E
E、
e
e
e 是固定的字符,用于分割 尾数部分 和 指数部分。
| 数学 | C语言 |
| --- | --- |
|
1.5
1.5
1.5 |
1.5
E
1
1.5E1
1.5E1 |
|
1990
1990
1990 |
1.99
e
3
1.99e3
1.99e3 |
|
−
0.054
-0.054
−0.054 |
−
0.54
e
−
1
-0.54e-1
−0.54e−1 |
### 3、浮点数类型
* 常用浮点数有两种类型,分别是`float`和`double`;
* `float`称为单精度浮点型,占 4 个字节;`double`称为双精度浮点型,占 8 个字节。
### 4、浮点数的输出
* 我们可以用`printf`对浮点数进行格式化输出,如下表格所示:
| 控制符 | 浮点类型 | 表示形式 |
| --- | --- | --- |
| `%f` | `float` | 十进制表示 |
| `%e` | `float` | 指数表示,输出结果中的 `e`小写 |
| `%E` | `float` | 指数表示,输出结果中的 `E`大写 |
| `%lf` | `double` | 十进制表示 |
| `%le` | `double` | 指数表示,输出结果中的`e`小写 |
| `%lE` | `double` | 指数表示,输出结果中的`E`大写 |
* 来看一段代码加深理解:
#include <stdio.h>
int main() {
float f = 520.1314f;
double d = 520.1314;
printf("%f\n", f);
printf("%e\n", f);
printf("%E\n", f);
printf("%lf\n", d);
printf("%le\n", d);
printf("%lE\n", d);
return 0;
}
* 这段代码的输出如下:
520.131409
5.201314e+02
5.201314E+02
520.131400
5.201314e+02
5.201314E+02
* 1)`%f`和 `%lf`默认保留六位小数,不足六位以 0 补齐,超过六位按四舍五入截断。
* 2)以指数形式输出浮点数时,输出结果为科学计数法。也就是说,尾数部分的取值为:
* 0
≤
尾
数
<
10
0 \le 尾数 \lt 10
0≤尾数<10
* 3)以上六个输出,对应的是表格中的六种输出方式,但是我们发现第一种输出方式中,并不是我们期望的结果,这是由于这个数超出了`float`能够表示的范围,从而产生了精度误差,而`double`的范围更大一些,所以就能正确表示,所以平时编码过程中,如果对效率要求较高,对精度要求较低,可以采用`float`;反之,对效率要求一般,但是对精度要求较高,则需要采用`double`。
## 二、浮点数的存储
### 1、科学计数法
* C语言中,浮点数在内存中是以科学计数法进行存储的,科学计数法是一种指数表示,数学中常见的科学计数法是基于十进制的,例如
5.2
×
1
0
11
5.2 × 10^{11}
5.2×1011;计算机中的科学计数法可以基于其它进制,例如
1.11
×
2
7
1.11 × 2^7
1.11×27 就是基于二进制的,它等价于
(
11100000
)
2
(11100000)\_2
(11100000)2。
* 科学计数法的一般形式如下:
* v
a
l
u
e
=
(
−
1
)
s
i
g
n
×
f
r
a
c
t
i
o
n
×
b
a
s
e
e
x
p
o
n
e
n
t
value = (-1)^{sign} \times fraction \times base^{exponent}
value=(−1)sign×fraction×baseexponent
>
>
>
>
>
>
> v
>
>
> a
>
>
> l
>
>
> u
>
>
> e
>
>
>
> value
>
>
> value:代表要表示的浮点数;
>
>
>
>
>
> s
>
>
> i
>
>
> g
>
>
> n
>
>
>
> sign
>
>
> sign:代表
>
>
>
>
> v
>
>
> a
>
>
> l
>
>
> u
>
>
> e
>
>
>
> value
>
>
> value 的正负号,它的取值只能是 0 或 1:取值为 0 是正数,取值为 1 是负数;
>
>
>
>
>
> b
>
>
> a
>
>
> s
>
>
> e
>
>
>
> base
>
>
> base:代表基数,或者说进制,它的取值大于等于 2;
>
>
>
>
>
> f
>
>
> r
>
>
> a
>
>
> c
>
>
> t
>
>
> i
>
>
> o
>
>
> n
>
>
>
> fraction
>
>
> fraction:代表尾数,或者说精度,是
>
>
>
>
> b
>
>
> a
>
>
> s
>
>
> e
>
>
>
> base
>
>
> base 进制的小数,并且
>
>
>
>
> 1
>
>
> ≤
>
>
> f
>
>
> r
>
>
> a
>
>
> c
>
>
> t
>
>
> i
>
>
> o
>
>
> n
>
>
> <
>
>
> b
>
>
> a
>
>
> s
>
>
> e
>
>
>
> 1 \le fraction \lt base
>
>
> 1≤fraction<base,这意味着,小数点前面只能有一位数字;
>
>
>
>
>
> e
>
>
> x
>
>
> p
>
>
> o
>
>
> n
>
>
> e
>
>
> n
>
>
> t
>
>
>
> exponent
>
>
> exponent:代表指数,是一个整数,可正可负,并且为了直观一般采用 **十进制** 表示。
>
>
>
#### 1)十进制的科学计数法
* 以
14.375
14.375
14.375 这个小数为例,根据初中学过的知识,想要把它转换成科学计数法,只要移动小数点的位置。如果小数点左移一位,则指数
e
x
p
o
n
e
n
t
exponent
exponent 加一;如果小数点右移一位,则指数
e
x
p
o
n
e
n
t
exponent
exponent 减一;
* 所以它在十进制下的科学计数法,根据上述公式,计算结果为:
* (
14.375
)
10
=
1.4375
×
1
0
1
(14.375)\_{10} = 1.4375 \times 10^1
(14.375)10=1.4375×101
* 其中
v
a
l
u
e
=
14.375
value = 14.375
value=14.375、
s
i
g
n
=
0
sign = 0
sign=0、
b
a
s
e
=
10
base = 10
base=10、
f
r
a
c
t
i
o
n
=
1.4375
fraction = 1.4375
fraction=1.4375、
e
x
p
o
n
e
n
t
=
1
exponent = 1
exponent=1;
* 这是我们数学中最常见的科学计数法。
#### 2)二进制的科学计数法
* 同样以
14.375
14.375
14.375 这个小数为例,我们将它转换成二进制,按照两部分进行转换:整数部分和小数部分。
* **整数部分**:整数部分等于 14,不断除 2 取余数,转换成 2 的幂的求和如下:
* (
14
)
10
=
1
×
2
3
+
1
×
2
2
+
1
×
2
1
+
0
×
2
0
(14)\_{10} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0
(14)10=1×23+1×22+1×21+0×20
* 所以 14 的二进制表示为
(
1110
)
2
(1110)\_2
(1110)2。
* **小数部分**:小数部分等于 0.375,不断乘 2 取整数部分的值,转换成 2 的幂的求和如下:
* (
0.375
)
10
=
0
×
2
−
1
+
1
×
2
−
2
+
1
×
2
−
3
(0.375)\_{10} = 0 \times 2^{-1} + 1 \times 2^{-2} +1 \times 2^{-3}
(0.375)10=0×2−1+1×2−2+1×2−3
* 所以 0.375 的二进制表示为
(
0.011
)
2
(0.011)\_2
(0.011)2
* 将 整数部分 和 小数部分 相加,得到的就是它的二进制表示:
* (
1110.011
)
2
(1110.011)\_2
(1110.011)2
* 同样,我们参考十进制科学计数法的表示方式,通过移动小数点的位置,将它表示成二进制的科学计数法,对于这个数,我们需要将它的小数点左移三位。得到:
* (
1110.011
)
2
=
(
1.110011
)
2
×
2
3
(1110.011)\_2 = (1.110011)\_2 \times 2^3
(1110.011)2=(1.110011)2×23
* 其中
v
a
l
u
e
=
14.375
value = 14.375
value=14.375、
s
i
g
n
=
0
sign = 0
sign=0、
b
a
s
e
=
2
base = 2
base=2、
f
r
a
c
t
i
o
n
=
(
1.110011
)
2
fraction = (1.110011)\_2
fraction=(1.110011)2、
e
x
p
o
n
e
n
t
=
3
exponent = 3
exponent=3;
* 我们发现,为了表示成科学计数法,小数点的位置发生了浮动,这就是浮点数的由来。

### 2、浮点数存储概述
* 计算机中的浮点数表示都是采用二进制的。上面的科学计数法公式中,除了
b
a
s
e
base
base 确定是 2 以外,符号位
s
i
g
n
sign
sign、尾数位
f
r
a
c
t
i
o
n
fraction
fraction、指数位
e
x
p
o
n
e
n
t
exponent
exponent 都是未知数,都需要在内存中体现出来。还是以
14.375
14.375
14.375 为例,我们来看下它的几个关键数值的存储。
#### 1)符号的存储
* 符号位的存储类似存储整型一样,单独分配出一个比特位来,用 0 表示正数,1 表示负数。对于
14.375
14.375
14.375,符号位的值是 0。
#### 2)尾数的存储
* 根据科学计数法的定义,尾数部分的取值范围为
1
≤
f
r
a
c
t
i
o
n
<
2
1 \le fraction \lt 2
1≤fraction<2
* 这代表尾数的整数部分一定为 1,是一个恒定的值,这样就无需在内存中提现出来,可以将其直接截掉,只要把小数点后面的二进制数字放入内存中即可,这个设计可真是省(扣)啊。
* 对于
(
1.110011
)
2
(1.110011)\_2
(1.110011)2,就是把`110011`放入内存。我们将内存中存储的尾数命名为
f
f
f,真正的尾数命名为
f
r
a
c
t
i
o
n
fraction
fraction,则么它们之间的关系为:
f
r
a
c
t
i
o
n
=
1.
f
fraction = 1.f
fraction=1.f
* 这时候,我们就可以发现,如果
b
a
s
e
base
base 采用其它进制,那么尾数的整数部分就不是固定的,它有多种取值的可能,以十进制为例,尾数的整数部分可能是
1
→
9
1 \to 9
1→9 之间的任何一个值,如此一来,尾数的整数部分就无法省略,必须在内存中表示出来。但是将
b
a
s
e
base
base 设置为 2,就可以节省掉一个比特位的内存,这也是采用二进制的优势。
#### 3)指数的存储
* 指数是一个整数,并且有正负之分,不但需要存储它的值,还得能区分出正负号来。所以存储时需要考虑到这些。
* 那么它是参照补码的形式来存储的吗?
* 答案是否。
* 指数的存储方式遵循如下步骤:
* 1)由于`float`和`double`分配给指数位的比特位不同,所以需要分情况讨论;
* 2)假设分配给指数的位数为
n
n
n 个比特位,那么它能够表示的指数的个数就是
2
n
2^n
2n;
* 3)考虑到指数有正负之分,并且我们希望正负指数的个数尽量平均,所以取一半,
2
n
−
1
2^{n-1}
2n−1 表示负数,
2
n
−
1
2^{n-1}
2n−1 表示正数。
* 4)但是,我们发现还有一个 0,需要表示,所以负数的表示范围将就一点,就少了一个数;
* 5)于是,如果原本的指数位
x
x
x,实际存储到内存的值就是:
x
+
2
n
−
1
−
1
x + 2^{n-1} - 1
x+2n−1−1
* 接下来,我们拿具体`float`和`double`的实际位数来举例说明实际内存中的存储方式。
### 3、浮点数存储内存结构
* 浮点数的内存分布主要分成了三部分:符号位、指数位、尾数位。浮点数的类型确定后,每一部分的位数就是固定的。浮点数的类型,是指它是`float`还是`double`。
* 对于`float`类型,内存分布如下:

* 对于`double`类型,内存分布如下:

---
* 1)符号位:只有两种取值:0 或 1,直接放入内存中;
* 2)指数位:将指数本身的值加上
2
n
−
1
−
1
2^{n-1}-1
2n−1−1 转换成 二进制,放入内存中;
* 3)尾数位:将小数部分放入内存中;
| 浮点数类型 | 指数位数 | 指数范围 | 尾数位数 | 尾数范围 |
| --- | --- | --- | --- | --- |
| `float` |
8
8
8 |
[
−
2
7
+
1
,
2
7
]
[-2^7+1,2^7]
[−27+1,27] |
23
23
23 |
[
(
0
)
2
,
(
1...1
⏟
23
)
2
]
[(0)\_2, (\underbrace{1...1}\_{23})\_2]
[(0)2,(23
1...1)2] |
| `double` |
11
11
11 |
[
−
2
10
+
1
,
2
10
]
[-2^{10}+1,2^{10}]
[−210+1,210] |
52
52
52 |
[
(
0
)
2
,
(
1...1
⏟
52
)
2
]
[(0)\_2, (\underbrace{1...1}\_{52})\_2]
[(0)2,(52
1...1)2] |
### 4、内存结构验证举例
* 以上文求得的
14.375
14.375
14.375 为例,我们将它转换成二进制,表示成科学计数法,如下:
* (
1110.011
)
2
=
(
1.110011
)
2
×
2
3
(1110.011)\_2 = (1.110011)\_2 \times 2^3
(1110.011)2=(1.110011)2×23
* 其中 值
v
a
l
u
e
=
14.375
value = 14.375
value=14.375、符号位
s
i
g
n
=
0
sign = 0
sign=0、基数
b
a
s
e
=
2
base = 2
base=2、尾数
f
r
a
c
t
i
o
n
=
(
1.110011
)
2
fraction = (1.110011)\_2
fraction=(1.110011)2、指数
e
x
p
o
n
e
n
t
=
3
exponent = 3
exponent=3;
#### 1)float 的内存验证
* 为了方便阅读,我采用了颜色来表示数字,橙色代表符号位,蓝色代表指数位,红色代表尾数,绿色代表尾数补齐位;并且 八位一分隔,增强可视化。
* 符号位的内存:0
* 指数的内存(加上127后等于130,再转二进制):10000010
* 尾数的内存(不足23位补零):1100110 00000000 00000000
* 按顺序组织到一起后得到:01000001 01100110 00000000 00000000
#include <stdio.h>
int main() {
int value = 0b01000001011001100000000000000000; // (1)
printf(“%f\n”, *(float *)(&value) ); // (2)
return 0;
}
>
> 运算结果如下:
>
>
>
>
>
> (
>
>
> 1
>
>
> )
>
>
>
> (1)
>
>
> (1) 第一步,就是把上面那串二进制的 01串 直接拷贝下来,然后在前面加上`0b`前缀,代表了
>
>
>
>
> v
>
>
> a
>
>
> l
>
>
> u
>
>
> e
>
>
>
> value
>
>
> value 这个四字节的内存结构就是这样的;
>
>
>
>
>
> (
>
>
> 2
>
>
> )
>
>
>
> (2)
>
>
> (2) 第二步,分三个小步骤:
>
>
>
>
>
> (
>
>
> 2.
>
>
> a
>
>
> )
>
>
>
> (2.a)
>
>
> (2.a) `&value`代表取`value`这个值的地址;
>
>
>
>
>
> (
>
>
> 2.
>
>
> b
>
>
> )
>
>
>
> (2.b)
>
>
> (2.b) `(float *)&value`代表将这个地址转换成`float`类型;
>
>
>
>
>
> (
>
>
> 2.
>
>
> c
>
>
> )
>
>
>
> (2.c)
>
>
> (2.c) `*(float *)&value`代表将这个地址里的值按照`float`类型解析得到一个`float`数;
>
>
>
* 运行结果为:
14.375000
* (有关取地址和指针相关的内容,由于前面章节还没有涉及,如果读者看不懂,也没有关系,后面在讲解指针时会详细讲解这块内容,敬请期待)。
#### 2)double 的内存验证
* 为了方便阅读,我采用了颜色来表示数字,橙色代表符号位,蓝色代表指数位,红色代表尾数,绿色代表尾数补齐位;并且 八位一分隔,增强可视化。
* 符号位的内存:0
* 指数的内存(加上1023后等于1026,再转二进制):100 00000010
* 尾数的内存(不足52位补零):1100 11000000 00000000 00000000 00000000 00000000 00000000
* 按顺序组织到一起后得到:01000000 00101100 11000000 00000000 00000000 00000000 00000000 00000000
#include <stdio.h>
int main() {
long long value = 0b0100000000101100110000000000000000000000000000000000000000000000; // (1)
printf(“%lf\n”, *(double *)(&value) ); // (2)
return 0;
}
>
> 运算结果如下:
>
>
>
>
>
> (
>
>
> 1
>
>
> )
>
>
>
> (1)
>
>
> (1) 第一步,就是把上面那串二进制的 01串 直接拷贝下来,然后在前面加上`0b`前缀,代表了
>
>
>
>
> v
>
>
> a
>
>
> l
>
>
> u
>
>
> e
>
>
>
> value
>
>
> value 这个八字节的内存结构就是这样的;
>
>
>
>
>
> (
>
>
> 2
>
>
> )
>
>
>
> (2)
>
>
> (2) 第二步,分三个小步骤:
>
>
>
>
>
> (
>
>
> 2.
>
>
> a
>
>
> )
>
>
>
> (2.a)
>
>
> (2.a) `&value`代表取`value`这个值的地址;
>
>
>
>
>
> (
>
>
> 2.
>
>
> b
>
>
> )
>
>
>
> (2.b)
>
>
> (2.b) `(double *)&value`代表将这个地址转换成`double`类型;
>
>
>
>
>
> (
>
>
> 2.
>
>
> c
>
>
> )
>
>
>
> (2.c)
>
>
> (2.c) `*(double *)&value`代表将这个地址里的值按照`double`类型解析得到一个`double`数;
>
>
>
* 没错,运行结果也是:
14.375000
* 这块内容,如果你看的有点懵,没有关系,等我们学了指针的内容以后,再来回顾这块内容,你就会如茅塞一样顿开了!
* 你学废了吗?🤣
---

>
> 通过这一章,我们学会了:
> 浮点数的科学计数法和内存存储方式;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第06题】给定两个点的坐标 (x1, y1) 和 (x2, y2),求两点间的距离](https://bbs.csdn.net/topics/618545628)
---
**(25)- 浮点数的精度问题**
## 一、精度问题的原因
* 对于十进制的数转换成二进制时,整数部分和小数部分转换方式是不同的。
### 1、整数转二进制
* 对于整数而言,采用的是 “展除法”,即不断的除以 2,取余数。
* 举例,
(
11
)
10
(11)\_{10}
(11)10 通过不断除2,取余数,得到的余数序列为
1
1
0
1
1 \ 1 \ 0 \ 1
1 1 0 1,然后逆序一下,
(
1011
)
2
(1011)\_2
(1011)2 就是它的二进制表示了。
* 所以对于一个有限位数的整数,一定能够转换成有限位数的二进制。
### 2、小数转二进制
* 而对于小数而言,采用的是 “乘二取整法”,即 不断乘以 2,取整数。一个有限位数的小数不一定能够转换成有限位数的二进制。只有末尾是 5 的小数才有可能转换成有限位数的二进制。
* 在之前的章节中,我们知道`float`和`double`的尾数部分是有限的,可定无法容纳无限的二进制数,即使能够转换成有限的位数,也可能会超出给定的尾数部分的长度,这时候就必须进行舍弃。这时候,由于和原数并不是完全相等,就出现了精度问题。
### 3、四舍五入
* 对与`float`类型,是一个四字节的浮点数,也就是32个比特位,具体内存存储方式如下图所示:

* 而对于`double`类型,是一个八字节的浮点数,也就是64个比特位,具体内存存储方式如下图所示:

* 所以对于`float`的二进制表示,尾数23位,加上一位隐藏的1,总共24位,最后一位可能是精确数字,也可能是近似数字;而其余的 23 位都是精确数字。从二进制的角度看,这种浮点格式的小数,最多有 24 位有效数字,但是能保证的是 23 位;也就是说,整体的精度为 23 ~ 24 位。如果转换成十进制,
2
24
=
16777216
2^{24} = 16777216
224=16777216,一共 8 位;也就是说,最多有 8 位有效数字(十进制),但是能保证的是 7 位,从而得出整体精度为 7 ~ 8 位。对于 double,同理可得,二进制形式的精度为 52 ~ 53 位,十进制形式的精度为 15 ~ 16 位。
| 浮点数类型 | 尾数个数(二进制) | 十进制位数 |
| --- | --- | --- |
| `float` | 23 ~ 24 | 7 ~ 8 |
| `double` | 52 ~ 53 | 15 ~ 16 |
## 二、IEEE 754 标准
* 浮点数除了 [光天化日学C语言(24)- 浮点数的存储](https://bbs.csdn.net/topics/618545628) 讲到的存储方式以外,还遵循 IEEE 754 标准。
* IEEE 754 标准规定,当指数
e
x
p
o
n
e
n
t
exponent
exponent 的所有位都为 1 时,不再作为 “正常” 的浮点数对待,而是作为特殊值处理。
### 1、负无穷大
* 如果此时尾数
f
r
a
c
t
i
o
n
fraction
fraction 的二进制位都为 0,且符号 sign 为 1,则表示负无穷大;
#include <stdio.h>
int main() {
int ninf = 0b11111111100000000000000000000000;
printf(“%f\n”, *(float *)&ninf );
return 0;
}
* 运行结果为:
-inf
### 2、正无穷大
* 如果此时尾数
f
r
a
c
t
i
o
n
fraction
fraction 的二进制位都为 0,且符号 sign 为 0,则表示正无穷大。
#include <stdio.h>
int main() {
int pinf = 0b01111111100000000000000000000000;
printf(“%f\n”, *(float *)&pinf );
return 0;
}
* 运行结果为:
inf
### 3、Not a Number
* 如果此时尾数
f
r
a
c
t
i
o
n
fraction
fraction 的二进制位不全为 0,则表示 NaN (Not a Number),也即这是一个无效的数字,或者该数字未经初始化。
#include <stdio.h>
int main() {
int nan = 0b11111111100000000000000000001010;
printf(“%f\n”, *(float *)&nan );
return 0;
}
* 运行结果如下,符合我们的预期:
nan
### 4、浮点数的规格化
* 当指数
e
x
p
o
n
e
n
t
exponent
exponent 的所有二进制位都为 0 时,情况也比较特殊。对于 “正常” 的浮点数,尾数
f
r
a
c
t
i
o
n
fraction
fraction 隐含的整数部分为 1,并且在读取浮点数时,内存中的指数
e
x
p
exp
exp 要减去中间值
2
n
−
1
−
1
2^{n-1}-1
2n−1−1 才能还原真实的指数
e
x
p
o
n
e



**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
定的值,这样就无需在内存中提现出来,可以将其直接截掉,只要把小数点后面的二进制数字放入内存中即可,这个设计可真是省(扣)啊。
* 对于
(
1.110011
)
2
(1.110011)\_2
(1.110011)2,就是把`110011`放入内存。我们将内存中存储的尾数命名为
f
f
f,真正的尾数命名为
f
r
a
c
t
i
o
n
fraction
fraction,则么它们之间的关系为:
f
r
a
c
t
i
o
n
=
1.
f
fraction = 1.f
fraction=1.f
* 这时候,我们就可以发现,如果
b
a
s
e
base
base 采用其它进制,那么尾数的整数部分就不是固定的,它有多种取值的可能,以十进制为例,尾数的整数部分可能是
1
→
9
1 \to 9
1→9 之间的任何一个值,如此一来,尾数的整数部分就无法省略,必须在内存中表示出来。但是将
b
a
s
e
base
base 设置为 2,就可以节省掉一个比特位的内存,这也是采用二进制的优势。
#### 3)指数的存储
* 指数是一个整数,并且有正负之分,不但需要存储它的值,还得能区分出正负号来。所以存储时需要考虑到这些。
* 那么它是参照补码的形式来存储的吗?
* 答案是否。
* 指数的存储方式遵循如下步骤:
* 1)由于`float`和`double`分配给指数位的比特位不同,所以需要分情况讨论;
* 2)假设分配给指数的位数为
n
n
n 个比特位,那么它能够表示的指数的个数就是
2
n
2^n
2n;
* 3)考虑到指数有正负之分,并且我们希望正负指数的个数尽量平均,所以取一半,
2
n
−
1
2^{n-1}
2n−1 表示负数,
2
n
−
1
2^{n-1}
2n−1 表示正数。
* 4)但是,我们发现还有一个 0,需要表示,所以负数的表示范围将就一点,就少了一个数;
* 5)于是,如果原本的指数位
x
x
x,实际存储到内存的值就是:
x
+
2
n
−
1
−
1
x + 2^{n-1} - 1
x+2n−1−1
* 接下来,我们拿具体`float`和`double`的实际位数来举例说明实际内存中的存储方式。
### 3、浮点数存储内存结构
* 浮点数的内存分布主要分成了三部分:符号位、指数位、尾数位。浮点数的类型确定后,每一部分的位数就是固定的。浮点数的类型,是指它是`float`还是`double`。
* 对于`float`类型,内存分布如下:

* 对于`double`类型,内存分布如下:

---
* 1)符号位:只有两种取值:0 或 1,直接放入内存中;
* 2)指数位:将指数本身的值加上
2
n
−
1
−
1
2^{n-1}-1
2n−1−1 转换成 二进制,放入内存中;
* 3)尾数位:将小数部分放入内存中;
| 浮点数类型 | 指数位数 | 指数范围 | 尾数位数 | 尾数范围 |
| --- | --- | --- | --- | --- |
| `float` |
8
8
8 |
[
−
2
7
+
1
,
2
7
]
[-2^7+1,2^7]
[−27+1,27] |
23
23
23 |
[
(
0
)
2
,
(
1...1
⏟
23
)
2
]
[(0)\_2, (\underbrace{1...1}\_{23})\_2]
[(0)2,(23
1...1)2] |
| `double` |
11
11
11 |
[
−
2
10
+
1
,
2
10
]
[-2^{10}+1,2^{10}]
[−210+1,210] |
52
52
52 |
[
(
0
)
2
,
(
1...1
⏟
52
)
2
]
[(0)\_2, (\underbrace{1...1}\_{52})\_2]
[(0)2,(52
1...1)2] |
### 4、内存结构验证举例
* 以上文求得的
14.375
14.375
14.375 为例,我们将它转换成二进制,表示成科学计数法,如下:
* (
1110.011
)
2
=
(
1.110011
)
2
×
2
3
(1110.011)\_2 = (1.110011)\_2 \times 2^3
(1110.011)2=(1.110011)2×23
* 其中 值
v
a
l
u
e
=
14.375
value = 14.375
value=14.375、符号位
s
i
g
n
=
0
sign = 0
sign=0、基数
b
a
s
e
=
2
base = 2
base=2、尾数
f
r
a
c
t
i
o
n
=
(
1.110011
)
2
fraction = (1.110011)\_2
fraction=(1.110011)2、指数
e
x
p
o
n
e
n
t
=
3
exponent = 3
exponent=3;
#### 1)float 的内存验证
* 为了方便阅读,我采用了颜色来表示数字,橙色代表符号位,蓝色代表指数位,红色代表尾数,绿色代表尾数补齐位;并且 八位一分隔,增强可视化。
* 符号位的内存:0
* 指数的内存(加上127后等于130,再转二进制):10000010
* 尾数的内存(不足23位补零):1100110 00000000 00000000
* 按顺序组织到一起后得到:01000001 01100110 00000000 00000000
#include <stdio.h>
int main() {
int value = 0b01000001011001100000000000000000; // (1)
printf(“%f\n”, *(float *)(&value) ); // (2)
return 0;
}
>
> 运算结果如下:
>
>
>
>
>
> (
>
>
> 1
>
>
> )
>
>
>
> (1)
>
>
> (1) 第一步,就是把上面那串二进制的 01串 直接拷贝下来,然后在前面加上`0b`前缀,代表了
>
>
>
>
> v
>
>
> a
>
>
> l
>
>
> u
>
>
> e
>
>
>
> value
>
>
> value 这个四字节的内存结构就是这样的;
>
>
>
>
>
> (
>
>
> 2
>
>
> )
>
>
>
> (2)
>
>
> (2) 第二步,分三个小步骤:
>
>
>
>
>
> (
>
>
> 2.
>
>
> a
>
>
> )
>
>
>
> (2.a)
>
>
> (2.a) `&value`代表取`value`这个值的地址;
>
>
>
>
>
> (
>
>
> 2.
>
>
> b
>
>
> )
>
>
>
> (2.b)
>
>
> (2.b) `(float *)&value`代表将这个地址转换成`float`类型;
>
>
>
>
>
> (
>
>
> 2.
>
>
> c
>
>
> )
>
>
>
> (2.c)
>
>
> (2.c) `*(float *)&value`代表将这个地址里的值按照`float`类型解析得到一个`float`数;
>
>
>
* 运行结果为:
14.375000
* (有关取地址和指针相关的内容,由于前面章节还没有涉及,如果读者看不懂,也没有关系,后面在讲解指针时会详细讲解这块内容,敬请期待)。
#### 2)double 的内存验证
* 为了方便阅读,我采用了颜色来表示数字,橙色代表符号位,蓝色代表指数位,红色代表尾数,绿色代表尾数补齐位;并且 八位一分隔,增强可视化。
* 符号位的内存:0
* 指数的内存(加上1023后等于1026,再转二进制):100 00000010
* 尾数的内存(不足52位补零):1100 11000000 00000000 00000000 00000000 00000000 00000000
* 按顺序组织到一起后得到:01000000 00101100 11000000 00000000 00000000 00000000 00000000 00000000
#include <stdio.h>
int main() {
long long value = 0b0100000000101100110000000000000000000000000000000000000000000000; // (1)
printf(“%lf\n”, *(double *)(&value) ); // (2)
return 0;
}
>
> 运算结果如下:
>
>
>
>
>
> (
>
>
> 1
>
>
> )
>
>
>
> (1)
>
>
> (1) 第一步,就是把上面那串二进制的 01串 直接拷贝下来,然后在前面加上`0b`前缀,代表了
>
>
>
>
> v
>
>
> a
>
>
> l
>
>
> u
>
>
> e
>
>
>
> value
>
>
> value 这个八字节的内存结构就是这样的;
>
>
>
>
>
> (
>
>
> 2
>
>
> )
>
>
>
> (2)
>
>
> (2) 第二步,分三个小步骤:
>
>
>
>
>
> (
>
>
> 2.
>
>
> a
>
>
> )
>
>
>
> (2.a)
>
>
> (2.a) `&value`代表取`value`这个值的地址;
>
>
>
>
>
> (
>
>
> 2.
>
>
> b
>
>
> )
>
>
>
> (2.b)
>
>
> (2.b) `(double *)&value`代表将这个地址转换成`double`类型;
>
>
>
>
>
> (
>
>
> 2.
>
>
> c
>
>
> )
>
>
>
> (2.c)
>
>
> (2.c) `*(double *)&value`代表将这个地址里的值按照`double`类型解析得到一个`double`数;
>
>
>
* 没错,运行结果也是:
14.375000
* 这块内容,如果你看的有点懵,没有关系,等我们学了指针的内容以后,再来回顾这块内容,你就会如茅塞一样顿开了!
* 你学废了吗?🤣
---

>
> 通过这一章,我们学会了:
> 浮点数的科学计数法和内存存储方式;
>
>
>
* 希望对你有帮助哦 ~ 祝大家早日成为 C 语言大神!
---
## 课后习题

* [【第06题】给定两个点的坐标 (x1, y1) 和 (x2, y2),求两点间的距离](https://bbs.csdn.net/topics/618545628)
---
**(25)- 浮点数的精度问题**
## 一、精度问题的原因
* 对于十进制的数转换成二进制时,整数部分和小数部分转换方式是不同的。
### 1、整数转二进制
* 对于整数而言,采用的是 “展除法”,即不断的除以 2,取余数。
* 举例,
(
11
)
10
(11)\_{10}
(11)10 通过不断除2,取余数,得到的余数序列为
1
1
0
1
1 \ 1 \ 0 \ 1
1 1 0 1,然后逆序一下,
(
1011
)
2
(1011)\_2
(1011)2 就是它的二进制表示了。
* 所以对于一个有限位数的整数,一定能够转换成有限位数的二进制。
### 2、小数转二进制
* 而对于小数而言,采用的是 “乘二取整法”,即 不断乘以 2,取整数。一个有限位数的小数不一定能够转换成有限位数的二进制。只有末尾是 5 的小数才有可能转换成有限位数的二进制。
* 在之前的章节中,我们知道`float`和`double`的尾数部分是有限的,可定无法容纳无限的二进制数,即使能够转换成有限的位数,也可能会超出给定的尾数部分的长度,这时候就必须进行舍弃。这时候,由于和原数并不是完全相等,就出现了精度问题。
### 3、四舍五入
* 对与`float`类型,是一个四字节的浮点数,也就是32个比特位,具体内存存储方式如下图所示:

* 而对于`double`类型,是一个八字节的浮点数,也就是64个比特位,具体内存存储方式如下图所示:

* 所以对于`float`的二进制表示,尾数23位,加上一位隐藏的1,总共24位,最后一位可能是精确数字,也可能是近似数字;而其余的 23 位都是精确数字。从二进制的角度看,这种浮点格式的小数,最多有 24 位有效数字,但是能保证的是 23 位;也就是说,整体的精度为 23 ~ 24 位。如果转换成十进制,
2
24
=
16777216
2^{24} = 16777216
224=16777216,一共 8 位;也就是说,最多有 8 位有效数字(十进制),但是能保证的是 7 位,从而得出整体精度为 7 ~ 8 位。对于 double,同理可得,二进制形式的精度为 52 ~ 53 位,十进制形式的精度为 15 ~ 16 位。
| 浮点数类型 | 尾数个数(二进制) | 十进制位数 |
| --- | --- | --- |
| `float` | 23 ~ 24 | 7 ~ 8 |
| `double` | 52 ~ 53 | 15 ~ 16 |
## 二、IEEE 754 标准
* 浮点数除了 [光天化日学C语言(24)- 浮点数的存储](https://bbs.csdn.net/topics/618545628) 讲到的存储方式以外,还遵循 IEEE 754 标准。
* IEEE 754 标准规定,当指数
e
x
p
o
n
e
n
t
exponent
exponent 的所有位都为 1 时,不再作为 “正常” 的浮点数对待,而是作为特殊值处理。
### 1、负无穷大
* 如果此时尾数
f
r
a
c
t
i
o
n
fraction
fraction 的二进制位都为 0,且符号 sign 为 1,则表示负无穷大;
#include <stdio.h>
int main() {
int ninf = 0b11111111100000000000000000000000;
printf(“%f\n”, *(float *)&ninf );
return 0;
}
* 运行结果为:
-inf
### 2、正无穷大
* 如果此时尾数
f
r
a
c
t
i
o
n
fraction
fraction 的二进制位都为 0,且符号 sign 为 0,则表示正无穷大。
#include <stdio.h>
int main() {
int pinf = 0b01111111100000000000000000000000;
printf(“%f\n”, *(float *)&pinf );
return 0;
}
* 运行结果为:
inf
### 3、Not a Number
* 如果此时尾数
f
r
a
c
t
i
o
n
fraction
fraction 的二进制位不全为 0,则表示 NaN (Not a Number),也即这是一个无效的数字,或者该数字未经初始化。
#include <stdio.h>
int main() {
int nan = 0b11111111100000000000000000001010;
printf(“%f\n”, *(float *)&nan );
return 0;
}
* 运行结果如下,符合我们的预期:
nan
### 4、浮点数的规格化
* 当指数
e
x
p
o
n
e
n
t
exponent
exponent 的所有二进制位都为 0 时,情况也比较特殊。对于 “正常” 的浮点数,尾数
f
r
a
c
t
i
o
n
fraction
fraction 隐含的整数部分为 1,并且在读取浮点数时,内存中的指数
e
x
p
exp
exp 要减去中间值
2
n
−
1
−
1
2^{n-1}-1
2n−1−1 才能还原真实的指数
e
x
p
o
n
e
[外链图片转存中...(img-g9FUzndF-1715692648935)]
[外链图片转存中...(img-EgEFDzlu-1715692648935)]
[外链图片转存中...(img-FaNACbTE-1715692648935)]
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**