【实战分享】基于机器学习的信用评分模型:从数据清洗到模型集成,AUC高达0.7966!

📌 项目简介

在金融领域,信用风险评估至关重要。本项目基于Kaggle的 Give Me Some Credit 数据集,通过完整的数据预处理、特征工程、模型训练与集成,构建了一个高性能信用评分模型。最终,随机森林分类器 在测试集上表现最佳(F1分数 0.7565,AUC值 0.7966),为金融机构提供可靠的借款人风险评估工具!

完整实验数据、原代码、实验报告、讲解PPT及详细注释见文尾

以下为简要实验报告:


🔍 核心技术与流程

1️⃣ 数据预处理

  • 删除重复值:清理冗余数据,提升数据唯一性。

  • 缺失值处理:对“家庭成员数”众数填充,对“月收入”缺失值删除(避免负债率失真)。

  • 异常值处理:基于箱线图 1.5倍IQR规则,剔除负

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值