📌 项目简介
在金融领域,信用风险评估至关重要。本项目基于Kaggle的 Give Me Some Credit 数据集,通过完整的数据预处理、特征工程、模型训练与集成,构建了一个高性能信用评分模型。最终,随机森林分类器 在测试集上表现最佳(F1分数 0.7565,AUC值 0.7966),为金融机构提供可靠的借款人风险评估工具!
完整实验数据、原代码、实验报告、讲解PPT及详细注释见文尾
以下为简要实验报告:
🔍 核心技术与流程
1️⃣ 数据预处理
-
删除重复值:清理冗余数据,提升数据唯一性。
-
缺失值处理:对“家庭成员数”众数填充,对“月收入”缺失值删除(避免负债率失真)。
-
异常值处理:基于箱线图 1.5倍IQR规则,剔除负