线性神经网络

本文展示了如何使用MATLAB实现感知器神经网络和线性神经网络的训练过程。首先,通过`perceptron`函数配置并训练感知器,计算平均误差(mae)。然后,构建线性神经网络,用`fitnet`函数训练,并计算平方误差(sse)。文章还涉及到权重和偏置的提取以及模型预测。
摘要由CSDN通过智能技术生成
%% 感知器神经网络初始代码
clear all;clc
x=[10 8 10 1;
   0 10 1 1];
t=[0 1 1 0];
net=perceptron;
net=configure(net,x,t);
net=train(net,x,t);
net.iw{1,1};
net.b{1};
%平均误差性能函数
x=[9 0 0 8 10];
t=[1 1 1 0 0];
net=configure(net,x,t);
net=train(net,x,t);
net.iw{1,1};
net.b{1};
P=[-10 -5 0 2 8];
t=[0 0 1 1 1];
y=net(P);
e=t-y;
perf=mae(e);
%% 线性神经网络
clear all;clc
[x,t]=simplefit_dataset;
net=fitnet(10);
net.performFcn='mae';
net=train(net,x,t);
y=net(x);
e=t-y;
perf=sse(net,t,y);
net.iw{1,1};
net.b{1};
P={2.5 2 1 3 3.4 2 3 4.5};
T={5 6.1 4 6 6.9 8 8 10};
Pi={1,3}
net=newlind(P,T,Pi);
Y=sim(net,P)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不知何时归家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值