%% 感知器神经网络初始代码
clear all;clc
x=[10 8 10 1;
0 10 1 1];
t=[0 1 1 0];
net=perceptron;
net=configure(net,x,t);
net=train(net,x,t);
net.iw{1,1};
net.b{1};
%平均误差性能函数
x=[9 0 0 8 10];
t=[1 1 1 0 0];
net=configure(net,x,t);
net=train(net,x,t);
net.iw{1,1};
net.b{1};
P=[-10 -5 0 2 8];
t=[0 0 1 1 1];
y=net(P);
e=t-y;
perf=mae(e);
%% 线性神经网络
clear all;clc
[x,t]=simplefit_dataset;
net=fitnet(10);
net.performFcn='mae';
net=train(net,x,t);
y=net(x);
e=t-y;
perf=sse(net,t,y);
net.iw{1,1};
net.b{1};
P={2.5 2 1 3 3.4 2 3 4.5};
T={5 6.1 4 6 6.9 8 8 10};
Pi={1,3}
net=newlind(P,T,Pi);
Y=sim(net,P)
线性神经网络
最新推荐文章于 2024-11-06 18:19:43 发布
本文展示了如何使用MATLAB实现感知器神经网络和线性神经网络的训练过程。首先,通过`perceptron`函数配置并训练感知器,计算平均误差(mae)。然后,构建线性神经网络,用`fitnet`函数训练,并计算平方误差(sse)。文章还涉及到权重和偏置的提取以及模型预测。
摘要由CSDN通过智能技术生成