062_基于python重庆旅游景点数据分析系统

目录

系统展示

开发背景

代码实现

项目案例 

获取源码


博主介绍:CodeMentor毕业设计领航者、全网关注者30W+群落,InfoQ特邀专栏作家、技术博客领航者、InfoQ新星培育计划导师、Web开发领域杰出贡献者,博客领航之星、开发者头条/腾讯云/AWS/Wired等平台优选内容创作者、深耕Web开发与学生毕业设计实战指导,与高校教育者/资深讲师/行业专家深度对话🤝

技术专长:Spring Framework、Angular、MyBatis、HTML5+CSS3、Servlet、Ruby on Rails、Node.js、Rust、网络爬虫、数据可视化、微信小程序、iOS应用开发、云计算、边缘计算、自然语言处理等项目的规划与实施。

核心服务:无偿功能蓝图构思、项目启动报告、任务规划书、阶段评估演示文稿、系统功能落地、代码实现与优化、学术论文定制指导、论文精炼与重组、长期答辩筹备咨询、Zoom在线一对一深度解析答辩要点、模拟答辩实战彩排、以及代码逻辑与架构设计深度剖析。

🍅文末获取源码联系🍅

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

Java项目精品实战案例《100套》

Java微信小程序项目实战《100套》

大数据项目实战《100套》

Python项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

系统展示

开发背景

基于Python的重庆旅游景点数据分析系统的开发背景可以从以下几个方面进行阐述:

  1. 旅游业的快速发展:随着人们生活水平的提高和旅游业的蓬勃发展,越来越多的人选择出行游玩,探索各地的风景名胜。重庆作为中国西南地区的旅游热门城市,以其独特的山水风光、丰富的历史文化和美食吸引着无数游客。然而,在众多的景点中,如何快速、准确地获取各个景点的信息,了解景点的特色和游客评价,成为游客面临的一个重要问题。

  2. 信息技术的进步:随着信息技术的发展,尤其是大数据技术的兴起,人们开始意识到可以通过技术手段来优化旅游体验和管理效率。通过收集和分析大量的旅游数据,可以为游客提供更加个性化的旅游推荐和服务,同时也可以帮助旅游管理部门更好地了解旅游市场的需求和趋势,制定更加科学的政策和规划。

  3. 数据可视化的需求:在大数据时代,数据的可视化展示变得越来越重要。通过将复杂的数据转化为直观的图表和报告,决策者可以更清晰地把握旅游市场的动态,从而做出更加明智的决策。对于游客而言,数据可视化也能帮助他们更快地了解景点信息,提升旅游体验。

  4. 现有解决方案的不足:目前,关于旅游景点数据可视化系统的研究已经引起了国内外学者的广泛关注。然而,目前在重庆市的景点数据可视化系统研究方面还比较薄弱,对于重庆市景点数据的收集和分析还存在一些困难和挑战。因此,研究和开发一种基于Python爬虫和Django框架的重庆景点数据可视化系统具有重要意义。

综上所述,基于Python的重庆旅游景点数据分析系统的开发背景是多方面的,包括旅游业的快速发展、信息技术的进步、数据可视化的需求以及现有解决方案的不足等。这些因素共同促使了该系统的开发和应用,旨在为游客提供更好的旅游导向和智能推荐服务,促进重庆旅游业的发展。

代码实现

首先,我们需要从某个数据源获取重庆旅游景点的数据。这里假设我们从一个CSV文件中读取数据。

import pandas as pd

# 读取CSV文件
data = pd.read_csv('chongqing_tourist_spots.csv')
print(data.head())

接下来,我们对数据进行清洗和预处理,包括处理缺失值、转换数据类型等。

# 检查缺失值
print(data.isnull().sum())

# 填充或删除缺失值
data = data.dropna()

# 转换数据类型(例如将评分转换为数值类型)
data['Rating'] = data['Rating'].astype(float)

 我们可以对数据进行一些基本的统计分析,如计算平均评分、中位数评分等。

# 基本统计信息
print(data.describe())

# 按景点分组计算平均评分
average_rating_by_spot = data.groupby('Spot')['Rating'].mean()
print(average_rating_by_spot)

使用Matplotlib或Seaborn库来创建可视化图表,以便更直观地展示数据。

import matplotlib.pyplot as plt
import seaborn as sns

# 设置绘图风格
sns.set(style="whitegrid")

# 绘制评分分布图
plt.figure(figsize=(10, 6))
sns.histplot(data['Rating'], bins=30, kde=True)
plt.title('Distribution of Ratings for Chongqing Tourist Spots')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()

# 绘制景点平均评分条形图
plt.figure(figsize=(12, 8))
average_rating_by_spot.sort_values().plot(kind='barh')
plt.title('Average Rating by Tourist Spot')
plt.xlabel('Average Rating')
plt.ylabel('Tourist Spot')
plt.show()

 最后,我们可以使用机器学习算法来预测景点的评分。这里以线性回归为例。

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 特征选择和目标变量
X = data[['NumberOfReviews', 'DistanceFromCityCenter']]
y = data['Rating']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测并评估模型
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

项目案例 

 

获取源码

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值