题目:
题目解析:
如图所示,一个数组内部存储的是高度,求数组中,能够组成最大容量的两个元素,需要注意的是容量是 高度*宽度,这里的宽度指的是两个数字之间的距离,且需要注意高度中,容量要变成最大容量和高度有关,两个数字中最小的那个 * 两个 数字之间的距离 =最大容量
算法原理:
从高度成宽度可以得知 只有高度是大的,宽度是大的,容量才能是大的!
因此使用双指针算法进行区间的枚举:
先用指针指向左右两端,然后算出容量v1,随后使用左端的1进行查看是否和其他位置的数字计算出的容量比v1大,答案当然是没用,这是因为在高度不变(高度是1)的情况下变动了宽度(两个数字之间的距离),所以容量没用v1大。
随后在操控指向的高度较小的那个指针——左边指针往后移动,计算出V2,随后在将指向高度较小的那个指针往另一个指针靠拢,并重复之前的操作,直到两个指针相遇!
本题的算法原理是 高度 * 宽度,所以我们使用了区间的枚举,利用高度不变时,宽度变小则容量变小的操作避免了一些冗余的容量计算,同时也通过变化高度来寻找最大的容量。
代码实现:
- int v 是计算容量,在两者中得到最低的高度然后乘上宽度(两个之间的距离)
- ret 是进行最大容量的更新
- 移动指针是看谁更小移动谁!以此进行代码的推进!