(2FSK相干解调原理图)
(2FSK非相干解调原理图)
①2FSK相干(非相干)解调时带通滤波器的作用:
带通滤波器将
分成载波为w1与w2的两路信号,同时滤除带外噪声。
②带通滤波器如何设计:
带通滤波器的设计要根据输入信号的带宽、中心频率去设计滤波器的通带截止频率、阻带截止频率、中心频率。
输入信号是2FSK已调信号,其带宽为
(
码元速率),其载波频率分别是Fc1=Rb*4; Fc2=Rb*8,2FSK已调信号可以看成是两个2ASK相加,2ASK信号的传输带宽是码元速率的2倍,因此滤波器的通带带宽是2Rb,中心频率分别是Fc1、Fc2。
%%用窗函数设计带通滤波器(blackman窗) Matlab用fir1(M,wc,window)分别是M滤波器阶数(等于长度N-1)、wc归一化截止频率(
)、window窗函数的类型。
function [x_bp] =FSK_bandpass(x,Fc,fs,Rb) wsl=2*pi*(Fc-2*Rb)/fs; %阻带上截止角频率 wsh=2*pi*(Fc+2*Rb)/fs; %阻带下截止角频率 wpl=2*pi*(Fc-1*Rb)/fs; %通带上截止角频率 wph=2*pi*(Fc+1*Rb)/fs; %通带带下截止角频率 wph减去wpl等于2Rb B=min((wpl-wsl),(wsh-wph)); %最小过渡带宽度 N=ceil(11*pi/B); %滤波器阶数(根据布莱克曼窗计算的滤波器阶数) %%计算滤波器系数 wl=(wsl+wpl)/2/pi; %上截止频率 6dB截止频率 wh=(wsh+wph)/2/pi; %下截止频率 6dB截止频率 wc=[wl,wh]; %设置理想带通截止频率 b=fir1(N-1,wc,blackman(N)); %设置滤波器系数 b_l2 = fix(length(b)/2); len= length(x); x_bandpass1 = conv(x,b); x_bp(1:len) = x_bandpass1(b_l2 : b_l2 + len -1);%去除滤波器延时 end |
③2FSK相干解调时低通滤波器的作用:
带通滤波器输出的信号是
,经过相乘器后输出的信号是
,因此低通滤波器将2w1的高频分量滤除。
④低通滤波器如何设计:
经过低通滤波器后要得到的是基带信号s(t),所以要根据基带信号的带宽去设置低通滤波器的通带截止频率、阻带截止频率。
此实验基带信号s(t)是单极性非归零码,因此基带信号的带宽是
也就是码元速率Rb。因此低通滤波器的通带宽度是Rb.
%用窗函数设计带低滤波器(hanning窗)Matlab用fir1(M,wc,window)分别是M滤波器阶数(等于长度N-1)、wc归一化截止频率(
)、window窗函数的类型。
function [ x_lowpass ] = FSK_lowpass( x,fs,Rb ) ws=Rb; %通带截止频率 ws1=2*Rb; %阻带起始频率 wt=2*pi*ws/fs; %经采样后的通带截止角频率 wz=2*pi*ws1/fs; %阻带的起始频率 wc=(wt+wz)/2; %滤波器6dB截止频率 未归一化 N=ceil(6.6*pi/(wz-wt)); b=fir1(N-1,wc/pi,hanning(N)); %滤波器时域函数,滤波系数 ,采用hanning窗实现低通滤波 b_l2 = fix(length(b)/2); len= length(x); x_lowpass1 = conv(x,b);%卷积 x_lowpass(1:len) = x_lowpass1(b_l2 : b_l2 + len -1); end |
⑤Hilbert变换
Hilbert变换的本质是原信号与
卷积,物理意义是将原信号相位延迟90°经过变换后的信号作为虚部,原信号作为实部构成解析信号,求解析信号的模从而得到原信号的包络。