1.题目
问题描述
生物学家小 R 正在研究一种特殊的兔子品种的繁殖模式。这种兔子的繁殖遵循以下规律:
- 每对成年兔子每个月会生育一对新的小兔子(一雌一雄)。
- 新生的小兔子需要一个月成长,到第二个月才能开始繁殖。
- 兔子永远不会死亡。
小 R 从一对新生的小兔子开始观察。他想知道在第 A
个月末,总共会有多少对兔子。
请你帮助小 R 编写一个程序,计算在给定的月份 A
时,兔子群体的总对数。
注意:
- 初始时有 1 对新生小兔子。
- 第 1 个月末有 1 对兔子:原来那对变成了成年兔子,并开始繁殖。
- 第 2 个月末有 2 对兔子:原来那 1 对成年兔子,繁殖了 1 对新生的小兔子。
- 从第 3 个月开始,兔子群体会按照上述规律增长。
输入
一个整数 A
(1 ≤ A ≤ 50),表示月份数。
返回
一个长整数,表示第 A
个月末兔子的总对数。
测试样例
样例1:
输入:A = 1
返回:
1
样例2:
输入:A = 5
返回:
8
样例3:
输入:A = 15
返回:
987
2.思路
通过推理可以得出
1月末 1对
2月末 2对
3月末 3对
4月末 5对
5月末 8对
满足斐波那契数列,采用dp数组计算即可
3.代码
#include <vector>
#include <iostream>
using namespace std;
long long solution(int A) {
// Edit your code here
if (A == 1 || A == 2) {
return A;
}
vector<int> dp = {1, 2};
for (int i = 2; i < A; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[A - 1];
}
int main() {
// Add your test cases here
std::cout << (solution(1) == 1) << std::endl;
std::cout << (solution(5) == 8) << std::endl;
std::cout << (solution(15) == 987) << std::endl;
return 0;
}
数组越界
改为使用push_back()方法
应该把dp中的数据类型改为long long 类型
#include <vector>
#include <iostream>
using namespace std;
long long solution(int A) {
// Edit your code here
if (A == 1 || A == 2) {
return A;
}
vector<long long> dp = {1, 2};
for (int i = 2; i < A; i++) {
dp.push_back(dp[i - 1] + dp[i - 2]);
}
return dp[A - 1];
}
int main() {
// Add your test cases here
std::cout << (solution(1) == 1) << std::endl;
std::cout << (solution(5) == 8) << std::endl;
std::cout << (solution(15) == 987) << std::endl;
return 0;
}