题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
输入第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
输出一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
样例输入
复制
70 3 71 100 69 1 1 2
样例输出
复制
3
解题思路
此问题类似于0,1背包问题,再背包空间有限的情况下,选择能装入背包物品的最大价值。具体内容可看B站【自制】01背包问题算法动画讲解_哔哩哔哩_bilibili
该问题的时间类似于背包,草药的价值就是物品的价值,且草药只能被采集一次。在有限时间内你能采到的最大草药的价值。
实现代码
T, M = map(int, input().split()) //你一共有T单位时间,有M棵草药
Time = [0]*(M+1) //用于存放不同草药所需时间
Value = [0]*(M+1) //用于存放不同草药的价值
Max_Value = [[0]*(M+1) for i in range(T+1)] //用于记录局部最优解
for i in range(1, M+1):
t, v = map(int,input().split())
Time[i], Value[i] = t, v
//此处for循环实现输入M棵草药的具体信息,包括采集第i棵草药所需的时间和第i棵草药的价值,并分别存入前面定义的数组中
for i in range(1, M+1): //此处双重循环均从1开始,即不记录为0的状态
for j in range(1, T+1):
if j < Time[i]: //判断剩余时间和采集草药所需时间的大小,当剩余时间小于所需时间时,不能采集此草药
Max_Value[j][i] = Max_Value[j][i-1] //注意横纵坐标,j代表时间,i代表第i棵草药
else:
Max_Value[j][i] = max(Max_Value[j][i-1], Max_Value[j-Time[i]][i-1] + Value[i])
//取采集第i棵草药或者不采集第i棵草药的最大值
print(Max_Value[T][M])