并查集可以在近乎O(1)的时间复杂度内完成这两个操作
在并查集中,这棵树树根的编号就是这棵树代表的集合的编号,如果两个点所在树的树根的编号相同,那么这两个点当然就在一个集合中了。
那么要怎么找到一个点所在树的树根呢?首先规定1、p[x]的父节点为x。2、根节点的父节点等于其自身,即p[x] == x。所以通过while(p[x] != x) x = p[x] 就可以找到树根。
但是3这个while操作非常费时,我们可以让一个点到根节点路径上的所有节点直接全部指向根节点,这样时间复杂度可以达到O(1)。这个方法叫做路径压缩。:
int find(int x) 返回x的祖宗节点 + 路径压缩
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
合并集合
#include <iostream>
using namespace std;
const int N = 100010;
int p[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) p[i] = i;
while (m -- )
{
char op[2];
int a, b;
scanf("%s%d%d", op, &a, &b);
if (*op == 'M') p[find(a)] = find(b);
else
{
if (find(a) == find(b)) puts("Yes");
else puts("No");
}
}
return 0;
}
连通块中点的数量
#include <iostream>
using namespace std;
const int N = 100010;
int n, m;
int p[N], Size[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++ )
{
p[i] = i;
Size[i] = 1;
}
while (m -- )
{
string op;
int a, b;
cin >> op;
if (op == "C")
{
cin >> a >> b;
a = find(a), b = find(b);
if (a != b)
{
p[a] = b;
Size[b] += Size[a];
}
}
else if (op == "Q1")
{
cin >> a >> b;
if (find(a) == find(b)) puts("Yes");
else puts("No");
}
else
{
cin >> a;
cout << Size[find(a)] << endl;
}
}
return 0;
}