一、使用Python处理JSON文件
1.将JSON文件读取为字典类型
首先导入json库,接着使用open函数来读取JSON文件,最后利用json.load函数将JSON字符串转化为Python字典形式.
2.将JSON文件读取为Pandas类型
Pandas库可以读取电脑本地磁盘上的JSON文件和通过URL读取网络上存放的文件
3.使用Pandas读取嵌套JSON类型
使用缩进来展示嵌套结构。即嵌套字段的处理
方法一:
members列被拆分为4个列
方法二:
json_normalize中添加参数 meta_prefix,可以为meta中的名字添加统一的前缀。
4.访问特定位置的数据
紫色的内容
蓝色的内容
5.编辑与导出JSON
也可以使用Pandas中的to_json () 函数
6.美化输出
可以在函数json.dump中采用参数indent参数来控制输出格式
7.输出字段排序
通过设置sort_key字段,可以控制输出时是否对key进行排序.
- 心得体会
我学会了如何访问字典中嵌套的字段。通过多次使用索引,我成功地提取了 JSON 数据中的特定字段,比如成员的身份信息和能力列表。这种方式使得我们可以快速准确地获取所需的数据。另外,我还掌握了将字典以 JSON 格式写入文件的方法。通过 json.dump() 函数,我成功地将修改后的字典写入到指定路径的 JSON 文件中。这样,我们可以将数据保存下来,方便后续的读取和处理。
在实验过程中,我遇到了一些问题和挑战。例如,确保文件路径的正确性和编码的一致性是很重要的。此外,在访问嵌套字段时,需要注意索引的正确性,以避免出现索引错误的情况。