搬砖问题36 块砖,36 人搬。男搬4 ,女搬3 ,两个小儿抬一砖。要求一次全搬完。问需男、女、小儿各若干?注意:假设男、女、小孩都有,请按照男、女、小孩的顺序输出所有可能的人数分配,每种人数分配方案占1行,每个数字空格隔开。输入无输出所有可能的人数分配方案,按照由小到大输出
#include<iostream>
using namespace std;
int main()
{
for(int i = 1;i<=36-3-2;i++)
{
for(int j = 1;j<=36-i-2;j++)
{
int k = 36-i-j;
if(i*4+k/2+j*3 == 36&&k%2 == 0)
{
cout<<i<<" "<<j<<" "<<k<<endl;
}
}
}
购买文具题目描述新学年就要开始了,爸爸把N元钱给了小青,让他购买一批文具,并作了以下要求:只能买圆珠笔、铅笔和铅笔芯,并且每样至少买一支,总数要超过30支,而且钱要全部花完。当小青去到文具店时,发现圆珠笔8角钱一支、铅笔2角钱一支、铅笔芯1角钱一支。小青怎么买才能符合爸爸的要求呢?请你编个程序帮他算出符合购买要求的所有方案总数。输入一个整数N,表示购买文具一共的元数。(1 <= N <= 50)输出一个整数,即符合购买要求的所有方案总数。输入复制8输出复制135
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
n = n*10;
int cnt = 0;
for(int i = 1;i<=(n-2-1)/8;i++)
{
int s = n-i*8;
for(int j = 1;j<=(s-1)/2;j++)
{
int k = (s-j*2)/1;
if(i*8+j*2+k*1 == n&&i+j+k > 30)
{
cnt++;
}
}
}
cout<<cnt;
}
兑换硬币用一张一元票换1分、2分和5分的硬币,每种至少一枚,问有几种换法?输入无输出输出只有一行(这意味着末尾有一个回车符号),包括1个整数
#include<iostream>
using namespace std;
int main()
{
int cnt = 0;
for(int i = 1;i<=(100-2-1)/5;i++)
{
int s = 100-i*5;
for(int j = 1;j<=(s-1)/2;j++)
{
int k = (s-j*2)/1;
cnt++;
}
}
cout<<cnt;
}
马克思手稿的问题马克思手稿中有一道趣味数学题:有30个人,其中可能有男人、女人和小孩,在一家饭馆里吃饭共花了50先令,假设每个男人各花3先令,每个女人各花2先令,每个小孩各花1先令,问男人、女人和小孩各有几人?(注意:不一定男人、女人、小孩都有)输入无输出每行3个数,按照男人、女人、小孩的顺序,由小到大依次输出所有可能的人数方案(男人、女人、小孩其中某些人的数量可以为0)
#include<iostream>
using namespace std;
int main()
{
for(int i = 0;i<=30-2-1;i++)
{
for(int j = 0;j<=30-i-1;j++)
{
int k = 30-i-j;
if(i*3+j*2+k*1 == 30)
{
cout<<i<<" "<<j<<" "<<k;
}
}
}
}
桐桐的计算这个周末数学老师布置了一道有趣的题目,意思是:九头鸟(传说中的一种怪鸟,它有九个头,两只脚)、鸡和兔子关在一个笼子里。数数它们的头正好是100个,数数它们的脚也正好是100只。老师让桐桐编程计算其中九头鸟、鸡和兔子各有多少只,你能帮助桐桐吗?输入无输出前面若干行,每行输出满足题目条件的一个解,共三个数,分别表示九头鸟、鸡和兔子的只数,最后一行输出题目解的总数。
#include<iostream>
using namespace std;
int main()
{
int cnt = 0;
for(int i = 0;i<=100-1-1;i++)
{
for(int j = 0;j<=30-i-1;j++)
{
int k = 30-i-j;
if(i+j+k == 30)
{
cnt++;
}
}
}
cout<<cnt;
}
不会 怎样种树?公园准备在小山上种桃树、梨树、苹果树,为了美观,总共准备种n棵树(n>=6且n一定是6的倍数),要求三种树都得有,且每种树的数量都得是偶数,桃树的数量不能比梨树的数量多,梨树的数量不能比苹果树的数量多。请问有这三种树的数量分别有哪些可能的组合方法,从少到多分别数出桃树、梨树、苹果数可能的数量组合,每行1个方案。(6.1.99)输入一个整数n(n>=6且是6的倍数)输出若干行的可能的组合方案,每行3个数,分别代表桃树、梨树、苹果树的可能的方案。输入复制18输出复制2 2 142 4 122 6 102 8 84 4 104 6 86 6 6
#include<iostream>
using namespace std;
int main()
{
int n;
int a,b,c;
a<b<c;
for(int i = 0;i<=n-a-b;i++)
{
for(int j = 0;j<=n-i-a;j++)
{
int k = n-i-j;
if(n>6&&n%6 == 0&&a%2==0&&b%2 == 0&&c%2 == 0)
{
cout<<i<<" "<<j<<" "<<k;
}
}
}
return 0;
}
改
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
for(int i = 2;i<=n-2-2;i++)
{
for(int j = 2;j<=n-i-2;j++)
{
int k = n-i-j;
if(i<=j&&j<=k&&i%2 == 0&&j%2 == 0&&k%2 == 0)
{
cout<<i<<" "<<j<<" "<<k<<endl;
}
}
}
不会姐妹对数
给定两个不同的正整数x,y,若x+y能被3除尽或能被7除尽,则称x,y为姐妹数对。例如:
2,4;2,5;为姐妹数对。
3,14;
不是姐妹数对。
那么,对给出的一个整数n(1≤n≤100), 1,2,…,n之间有多少个姐妹数。
输入
一个整数n
输出
一个整数,即1~n之间姐妹数对的个数。
输入复制
6
输出复制
8
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int x,y;
int cnt = 0;
for(int i = 1;i<=n;i++)
{
if((x+y)%3 == 0&&(x+y)%7 == 0&&x != y)
{
cnt++;
cout<<cnt;
}
}
return 0;
}
改
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int cnt = 0;
for(int x = 1;x<=n;x++)
{
for(int y = x+1;y<=n;y++)
{
if(((x+y)%3 == 0||(x+y)%7 == 0))
{
cnt++;
}
}
}
cout<<cnt;
不会四个人的年龄求解
张三、李四、王五、刘六他们四人的年龄是一个等差数列,且年龄相加是26,
相乘是880,请问这四个人可能的年龄分别是多少?(假设一个人的年龄范
围在1~130之间)
输入
无
输出
按照由小到大输出四个人的年龄的可能的值,数与数用空格隔开,每个可能的年龄方
案一行,请输出所有可能的年龄方案!
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
for(int i = 0;i<=26-b-c-d;i++)
{
for(int j = 0;j<=26-i-d-c;j++)
{
int k = 26-i-j-d;
int l = 26-i-j-k;
if(i+j+k+l == 26&&i*j*l*k == 880
{
cout<<k<<" "<<j<<" "<<i<<" "<<l<<endl;
}
}
}
return 0;
}
改
#include<iostream>
using namespace std;
int main()
{
for(int a = 1;a<=26/4;a++)
{
for(int b = 1;b<=26/4;b++)
{
int h = 4*a+6*b;
int x = a*(a+b)*(a+2*b)*(a+b*3);
if(h==26&&x == 880)
{
cout<<a<<" "<<a+b<<" "<<a+2*b<<" "<<a+3*b<<endl;
}
}
}
不会纸盒的最大体积是多少?
在一张尺寸为n * n厘米的正方形硬纸板的四个角上,分别裁剪掉一个
m * m厘米的小正方形,就可以做成一个无盖纸盒,请问这个无盖纸盒
的最大体积是多少?
(立方体的体积v = 底面积 * 高)
比如:n = 5,那么裁掉的小正方形的尺寸可能是1厘米、2厘米
如果裁掉1厘米的四个小正方形,得到纸盒的体积 = (5 - 2) * (5 - 2) * 1
= 9立方厘米
如果裁掉2厘米的四个小正方形,得到纸盒的体积 = (5 - 4) * (5 - 4) * 2
= 2立方厘米
因此,裁掉边长为2的四个小正方形得到的纸盒体积最大,最大体积为
9(立方厘米)
(7.1)(n-2m)*(n-2m)*m
改
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int max = 0;
for(int m = 1;m<=n/2;m++)
{
int s = (n-m*2)*(n-m*2)*m;
if(s>max)
{
max = s;
}
}
cout<<max;
不会回文数
回文数的定义为:如果把一个数的各个数位上的数字颠倒过来得到的新数与原数相等,则此数
是回文数,例:7,22,131,2112,31013,…都是回文数。 对任意给出的一个整数n,经过一系列的处理,
最后都能成为回文数。处理的方法是,该数加上它的颠倒数,
例如:n=176
第一次处理后
176+671=847
第二次处理后
847+748=1595
第三次处理后
1595+5951=7546
第四次处理后
7546+6457=14003
第五次处理后
14003+30041=44044
此时成为回文数,共进行5次处理。
问题:给出n 后,求出使该数按照以上规则进行一系列处理后成为回文数的最少操作次数。
回输入
n 一个整数(1≤n≤1000000)
输出
使n成为回文数的最少处理次数。 若开始给出的n是回文数,
则输出0(即不需任何处理)。
输入复制
67
输出复制
2
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int cnt = 0;
while(true)
{
int tmp = n;
int a = 0;
while(tmp!=0)
{
a = a-10+tmp%10;
tmp = tmp/10;
}
if(a == n)
{
break;
}
n = n+a;
cnt++;
}
cout<<cnt;
不会一个六位数
有一个六位数,其个位数字7,现将个位数字移至首位(十万位),而其余各位数字
顺序不变,均后退一位,得到一个新的六位数,假如新数为旧数的4倍,求原来的六
位数
输入
无
输出
原来的六位数
#include<iostream>
using namespace std;
int main()
{
for(int i = 10000;i<=99999;i++)
{
int y = i*10+7;
int x = 7*100000+i;
if(x == y*4)
{
cout<<y<<endl;
}
}
}
不会猴子吃桃子
猴子吃桃子问题:猴子第一天摘下若干个桃子,当即吃了一半还不过瘾,又多吃了一
个;第二天又将剩下的桃子吃掉一半又多吃了一个;以后每天早上都吃了前一天剩下
的一半零一个。到了第十天想再吃时,见只剩下一个桃子,求第一天共摘了多少个桃
子?
猴子吃桃子
输入
无
输出
一个整数,第一天共有多少个桃子
#include<iostream>
using namespace std;
int main()
{
while(true)
{
int n;
n*2-1;
cout<<n;
break;
}
}