代码随想录算法训练营第41天 | 343:整数拆分, 96:不同的二叉搜索树

文章讲述了如何使用动态规划方法解决LeetCode中的两个问题:一是将整数拆分成多个正整数以最大化乘积,二是计算给定节点数的二叉搜索树的不同构造方式。通过定义和计算dp数组来实现状态转移方程。
摘要由CSDN通过智能技术生成

Leetcode - 343:整数拆分

题目:

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

笔记:

按照动规五部曲来思考:

(1)确定dp数组含义:

dp[i]表示拆分整数i的最大成绩和

(2)初始化dp数组:

dp[0] = 0,dp[1] = 1, dp[2] = 1

(3)确定状态转移方程:

由于我们在拆分的时候做选择:一个是我们可以选择两个数来做比较,一个我们可以将被减数在做拆分用被减数的最大字元素乘积,也就是我们可以选择拆掉被减数或者不拆被减数:

dp[i] = max(dp[i],max(dp[i - j] * j + (i - j) * j)

(3)遍历顺序:

从小到大遍历即可

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1, 0);
        dp[0] = 0;
        dp[1] = 1;
        for(int i = 2; i <= n; i++){
            for(int j = 1; j < i; j++){
                dp[i] = max(dp[i], max(dp[i - j] * j, (i - j) * j));
            }
        }
        return dp[n];
    }
};

这里我们需要注意的是第二个max才是体现我们动态规划思想的重要一步。

为什么不拆分j呢;因为j的拆分已经在第一层for循环求过了。

Leetcode - 96:不同的二叉搜索树

题目:

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

笔记:

这道题是真的难,

(1)确定dp数组含义:dp[i]表示i个元素的二叉搜索树的种类。

(2)初始化,dp[0] = 1

(3)状态转移方程:这里我们用到了两层循环,外层循环是求目标数,内层循环是选取不同的节点作为头结点,各自的搜索树数量。以m为头结点的搜索树,其左子树有m-1个元素,其右节点有n-m个(减去头节点)。然后因为是求组合数所以两者相乘即得。

dp[i] += dp[j - 1] * dp[i - j];

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= i; j++){
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值