区间dp--洛谷P3205 [HNOI2010] 合唱队

[HNOI2010] 合唱队

洛谷链接

题目描述

为了在即将到来的晚会上有更好的演出效果,作为 AAA 合唱队负责人的小 A 需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共 n n n 个人,第 i i i 个人的身高为 h i h_i hi 米( 1000 ≤ h i ≤ 2000 1000 \le h_i \le 2000 1000hi2000),并已知任何两个人的身高都不同。假定最终排出的队形是 A A A 个人站成一排,为了简化问题,小 A 想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中:

  • 第一个人直接插入空的当前队形中。

  • 对从第二个人开始的每个人,如果他比前面那个人高( h h h 较大),那么将他插入当前队形的最右边。如果他比前面那个人矮( h h h 较小),那么将他插入当前队形的最左边。

n n n 个人全部插入当前队形后便获得最终排出的队形。

例如,有 6 6 6 个人站成一个初始队形,身高依次为 1850 , 1900 , 1700 , 1650 , 1800 , 1750 1850, 1900, 1700, 1650, 1800, 1750 1850,1900,1700,1650,1800,1750
那么小 A 会按以下步骤获得最终排出的队形:

  • 1850 1850 1850

  • 1850 , 1900 1850, 1900 1850,1900,因为 1900 > 1850 1900 > 1850 1900>1850

  • 1700 , 1850 , 1900 1700, 1850, 1900 1700,1850,1900,因为 1700 < 1900 1700 < 1900 1700<1900

  • 1650 , 1700 , 1850 , 1900 1650, 1700, 1850, 1900 1650,1700,1850,1900,因为 1650 < 1700 1650 < 1700 1650<1700

  • 1650 , 1700 , 1850 , 1900 , 1800 1650, 1700, 1850, 1900, 1800 1650,1700,1850,1900,1800,因为 1800 > 1650 1800 > 1650 1800>1650

  • 1750 , 1650 , 1700 , 1850 , 1900 , 1800 1750, 1650, 1700, 1850, 1900, 1800 1750,1650,1700,1850,1900,1800,因为 1750 < 1800 1750 < 1800 1750<1800

因此,最终排出的队形是 1750 , 1650 , 1700 , 1850 , 1900 , 1800 1750, 1650, 1700, 1850, 1900, 1800 1750,1650,1700,1850,1900,1800

小 A 心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形。

请求出答案对 19650827 19650827 19650827 取模的值。

输入格式

第一行一个整数 n n n
第二行 n n n 个整数,表示小 A 心中的理想队形。

输出格式

输出一行一个整数,表示答案   m o d   19650827 \bmod 19650827 mod19650827 的值。

样例 #1

样例输入 #1

4
1701 1702 1703 1704

样例输出 #1

8

提示

对于 30 % 30\% 30% 的数据, n ≤ 100 n \le 100 n100
对于 100 % 100\% 100% 的数据, n ≤ 1000 n \le 1000 n1000 1000 ≤ h i ≤ 2000 1000 \le h_i \le 2000 1000hi2000

题目解答

明显题目应当从局部入手,求出答案队列局部不同方案数累加,且答案区间可以进行划分,明显符合大区间包含小区间的情况,故考虑区间 d p dp dp
考虑当前队列形成情况
要么是从左边进来一个人形成此队列
要么是从右边进来一个人形成队列
故可以划分为以下情况
f [ i , j , 0 ] f[i,j,0] f[i,j,0]表示区间 i i i j j j且是由 i i i从左边进来形成的方案数
i i i从左边进来包含两种情况:

  1. 上一个进来的数为 a [ i + 1 ] a[i+1] a[i+1]
    可以得出状态转移方程为
    f [ i , j , 0 ] + = f [ i + 1 , j , 0 ] f[i,j,0]+=f[i+1,j,0] f[i,j,0]+=f[i+1,j,0]
    要求 a [ i ] < a [ i + 1 ] a[i]<a[i+1] a[i]<a[i+1]
  2. 上一个进来的数为 a [ j ] a[j] a[j]
    可得状态转移方程为
    f [ i , j , 0 ] + = f [ i + 1 , j , 1 ] f[i,j,0]+=f[i+1,j,1] f[i,j,0]+=f[i+1,j,1]
    要求 a [ i ] < a [ j ] a[i]<a[j] a[i]<a[j]

最终可以得到 i i i从左边进入得全部答案


同理可以得出 j j j从右边进入的答案
状态转移方程为
f [ i , j , 1 ] + = f [ i , j − 1 , 1 ] f[i,j,1]+=f[i,j-1,1] f[i,j,1]+=f[i,j1,1]
要求 a [ j ] > a [ j − 1 ] a[j]>a[j-1] a[j]>a[j1]
f [ i , j , 1 ] + = f [ i , j − 1 , 0 ] f[i,j,1]+=f[i,j-1,0] f[i,j,1]+=f[i,j1,0]
要求 a [ j ] > a [ i ] a[j]>a[i] a[j]>a[i]


初始化
我们初始化仅初始化一个方向即可,我们可以默认方向为左边,因为我们只有一个人时方案数应该是1,如果我们初始化两边,那么他可以从右边进来,也可以从左边进来,那么会导致方案数被错误记为2

code

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1010;
const int Mod=19650827;
typedef long long ll;
ll f[N][N][2];
int n;
int a[N];
int main()
{   cin>>n;
    for(int i=1;i<=n;i++)cin>>a[i];
    for(int i=1;i<=n;i++)f[i][i][0]=1;//初始化,仅初始化一个方向即可
    for(int len=1;len<=n;len++)//枚举区间长度
        for(int i=1;i+len-1<=n;i++)//枚举左端点
    {
        int j=i+len-1;
        //第一种情况,考虑最后i从左边进入
        if(a[i]<a[i+1])f[i][j][0]+=f[i+1][j][0];
        if(a[i]<a[j])f[i][j][0]+=f[i+1][j][1];
        //第二种情况,考虑j从右边进入
         if(a[j]>a[j-1])f[i][j][1]+=f[i][j-1][1];
         if(a[j]>a[i])f[i][j][1]+=f[i][j-1][0];
         //别忘记取模
         f[i][j][0]%=Mod;
         f[i][j][1]%=Mod;
    }
    cout<<(f[1][n][0]+f[1][n][1])%Mod<<endl;
}

<think>好的,我现在需要解决用户关于[HNOI2010]弹飞绵羊的问题,特别是分块方法的解题思路。首先,我需要回忆一下这个题目的具体内容以及分块算法的一般应用。 题目大意应该是每个装置有一个弹力系数,当绵羊到达某个位置时会被弹到后面的某个位置,直到弹飞为止。问题应该是要求动态维护弹飞所需的步数,或者支持修改某个位置的弹力系数,同时查询某个点弹飞所需的次数。 分块处理这种问题通常是将数据分成多个块,每个块维护一些预处理的信息,这样在查询和修改时可以降低时间复杂度。比如,对于每个位置i,可以预处理出跳出当前块需要的步数,以及跳出后的落点位置。这样查询时就可以逐块跳跃,减少计算量。 接下来,我需要具体思考分块如何在这里应用。每个块的大小通常取√n,这样总共有√n个块。对于每个位置i,在预处理阶段,需要计算从i出发,需要多少步才能跳出当前所在的块,并且记录跳出后的位置。这样,当查询某个点的弹飞步数时,只需要累加每个块的步数,直到弹飞为止。修改操作时,只需要更新所在块内的信息,因为块内的预处理信息可能被影响,但其他块不受影响。 例如,假设块大小为m,对于每个位置i,如果i + a[i]超出了当前块的范围,则step[i] = 1,next[i] = i + a[i]。否则,step[i] = step[i + a[i]] + 1,next[i] = next[i + a[i]]。这样预处理之后,查询时从当前位置开始,每次跳到next[i],并累加step[i],直到next[i]超过n,即弹飞。 修改操作时,比如修改位置k的弹力系数,那么需要从k所在块的起始位置开始,重新计算该块内所有位置的step和next。这是因为修改可能影响该块内其他位置的预处理结果。比如,如果某个位置j的next[j]原本指向k的位置,修改k的弹力系数会影响j的next和step,所以需要重新计算整个块的信息。 这样,每次查询的时间复杂度是O(√n),因为每个块最多跳一次,而块的数量是√n。修改操作的时间复杂度是O(√n),因为需要重新处理整个块,大小是√n。 需要注意的是,分块的具体实现需要确定块的大小,通常取√n,但有时根据实际情况调整可能会有更好的效果。另外,预处理每个块的step和next时,需要从块的末尾向前处理,因为后面的位置的处理结果可能影响前面的位置。 可能还需要考虑边界条件,比如弹力系数是否可能超过数组长度,或者弹飞的条件。比如,当i + a[i] >= n时,就算弹飞,此时step[i]=1,next[i]=n或某个超出范围的标记。 另外,在实现过程中,如何处理块的分界点,以及如何遍历每个块内的元素,都是需要注意的细节。例如,块的范围是左闭右开还是左闭右闭,需要统一处理,避免数组越界或者漏掉元素。 总结一下,解题步骤应该是: 1. 将整个数组分成若干块,块的大小约为√n。 2. 预处理每个块内的每个位置i的step[i]和next[i],处理顺序应该是从块的最后一个元素向前处理。 3. 查询时,从查询点开始,不断跳到next[i],并累加step[i],直到i超出数组范围,总步数即为答案。 4. 修改时,找到修改位置所在的块,重新预处理该块内的所有元素的step和next。 这样,分块方法能够将时间复杂度降到O(m√n),其中m是操作次数,适用于较大的数据规模,符合算法竞赛的要求。 在代码实现时,需要注意块的下标处理,比如块号从0开始还是1开始,块的大小是否需要调整以适应数组长度不能被整除的情况。此外,预处理函数需要正确计算每个块的起点和终点,并在块内逆序处理元素,以确保后面的元素先被处理,前面的元素可以正确引用后面的step和next值。 举个例子,假设数组长度n=10,块大小m=3,那么块0是0-2,块1是3-5,块2是6-8,块3是9。对于每个块内的元素,比如块0,从位置2开始处理到0。对于位置i=2,如果a[2]=4,则i+a[i]=6,超过块0的范围,所以step[2]=1,next[2]=6。然后处理i=1,假设a[1]=2,则i+a[i]=3,属于块1,所以step[1]=1,next[1]=3。接着处理i=0,假设a[0]=1,则i+a[i]=1,仍在块0内,所以step[0] = step[1] + 1 = 2,next[0] = next[1] =3。这样,当查询位置0时,会先跳到3,再跳到next[3]的位置,依此类推,直到弹飞。 因此,分块方法的关键在于预处理每个块内的跳跃信息,使得查询时可以快速跨块计算,而修改时只需要更新所在块的信息,从而将时间复杂度降低到可接受的范围。</think>### [HNOI2010]弹飞绵羊分块解法思路 #### 问题分析 题目要求维护一个包含$n$个弹簧的序列,每个弹簧有弹力系数$k_i$。当绵羊落在位置$i$时,会被弹到$i + k_i$的位置,直到弹飞(即位置$\geq n$)。需要支持两种操作: 1. **查询**:从位置$x$出发,弹多少次会被弹飞? 2. **修改**:将位置$x$的弹力系数改为$y$。 #### 分块思想 将序列分为$\sqrt{n}$个块,每个块大小约为$\sqrt{n}$。预处理每个位置的**跳跃步数**和**落点**,使得: - **块内跳跃信息**:对于每个位置$i$,记录跳出当前块所需的步数$step[i]$和最终落点$next[i]$。 - **查询优化**:每次查询只需逐块跳跃,时间复杂度$O(\sqrt{n})$。 - **修改优化**:修改仅影响当前块的信息,时间复杂度$O(\sqrt{n})$。 #### 预处理方法 1. **块划分**:将数组划分为$m = \lceil \sqrt{n} \rceil$个块,每个块大小为$m$。 2. **逆序处理**:从每个块的最后一个位置向前遍历: - 若$i + k_i$超出当前块,则$step[i] = 1$,$next[i] = i + k_i$。 - 若未超出,则继承下一个位置的步数和落点: $$step[i] = step[i + k_i] + 1, \quad next[i] = next[i + k_i]$$ #### 查询操作 从位置$x$开始,不断跳转到$next[x]$并累加$step[x]$,直到$next[x] \geq n$。总步数即为答案。 #### 修改操作 1. 找到位置$x$所在的块。 2. **重置块内信息**:从该块的最后一个位置重新逆序计算$step$和$next$。 #### 代码框架(Python示例) ```python import math class BlockSolution: def __init__(self, n, k): self.n = n self.k = k.copy() self.block_size = int(math.sqrt(n)) + 1 self.step = [0] * n self.next = [0] * n self.build_blocks() def build_blocks(self): # 分块预处理 for block_start in range(0, self.n, self.block_size): block_end = min(block_start + self.block_size, self.n) for i in range(block_end - 1, block_start - 1, -1): if i + self.k[i] >= block_end: # 跳出当前块 self.step[i] = 1 self.next[i] = i + self.k[i] else: # 依赖块内后续位置 self.step[i] = self.step[i + self.k[i]] + 1 self.next[i] = self.next[i + self.k[i]] def query(self, x): # 查询弹跳次数 res = 0 while x < self.n: res += self.step[x] x = self.next[x] return res def update(self, x, y): # 修改弹力系数并重建块 self.k[x] = y block_start = (x // self.block_size) * self.block_size block_end = min(block_start + self.block_size, self.n) for i in range(block_end - 1, block_start - 1, -1): if i + self.k[i] >= block_end: self.step[i] = 1 self.next[i] = i + self.k[i] else: self.step[i] = self.step[i + self.k[i]] + 1 self.next[i] = self.next[i + self.k[i]] ``` #### 复杂度分析 - **预处理**:$O(n)$ - **查询**:$O(\sqrt{n})$ - **修改**:$O(\sqrt{n})$ #### 应用场景 分块法适用于需要**动态维护跳跃路径**且**支持快速修改**的问题,例如弹飞绵羊、树状路径跳跃等[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值