目录
1总述:一图流带你认识数学建模
本篇文章主要用于介绍数学建模的一些基础知识,仅做一些简单介绍,带领大家一起开启数学建模和matlab的学习之旅,同时也作为我自己学习的记录,希望能够与大家一起共同进步,另外作者当前是跟“数学建模老哥”这位b站up主学习的。传送门:数学建模老哥的B站空间,配合食用更佳哦。本篇文章之后大概是按照数据预处理,优化模型,预测模型,评价模型和分类模型来进行讲解。而在大部分数学建模比赛中(国赛,美赛,妈妈杯,电工杯等)所涉及的类型,也不外乎这几种。这里简单介绍相关的概念,主要用途。具体的操作和相关代码,留作之后来讲解。从下图可以较为直观的了解之后的学习顺序,当然只是进行了简单的总结。
所要求涉及到的基本知识储备:
1.相应的学科知识,如高数,线代,概率论与数理统计,运筹学等;
2.一定的编程能力,如py,matlab,R语言等相关编程语言;
3.相关的软件了解,如Lingo,SPSS,Excel等。
2数据预处理
2.1数据预处理概述
进行数据预处理是因为原始的数据往往并不是完美无缺的,需要经过一系列的处理和清洗,以确保数据的质量和可用性。例如有的数据重复,有的数据缺失,有的数据异常,或者就是你单纯的看这些数据不爽,这些都会导致之后在使用相关数据时出现偏差。
2.2相关思路
- 数据清洗
缺失值问题,对于一组数据,可能因为各种原因导致缺少相应信息(例如,记录人员在工作时间玩原神,结果忘记记录数据),对于这类问题应该如何解决。如果缺失的数据不是关键数据,应该怎么办;如果缺失的数据是关键数据,又该怎么办。
异常值问题,对于一组数据,可能因为各种原因,导致记录数据时出现错误。对于这种问题,两个关键点,即如何发现异常值和如何解决异常值
重复值问题,对于一组数据,可能因为各种原因,导致最后出现重复数据(记录了一遍后可能又记录一遍),对于这种问题应该如何解决,如果数据简单,你可能一眼就找到;如果,我是说如果啊,当我拿出千万条数据而里面就只有一组重复值,阁下该如何应对呢。 - 数据转换
数据编码,当我们拿到一组数据后,数据类型各不相同(文本,图像,音频),如何将数据从一种形式转换为另一种可以进行数学使用的形式。就像我们不能期望人家题目直接给你答案一样,你也不能期望数据类型就是我们想要的数据。
特征缩放,举例,当我们统计大象(约3-6吨)和人(约50-100kg)的体重时,两者的量纲及单位并不统一,我们不能以人的标准来判断一头3吨的大象相较于人来说非常的重,一位100kg的人相较于大象来说非常的轻。所以不能拿来一起使用,需要进行标准化或归一化来消除量纲和单位的影响。
简单函数变换,对于一些复杂的函数我们可能并没有学习过相应的性质,需要进行函数变换,变为我们所熟悉的函数。例如,对数变换,平方根变换,指数变换等方法。 - 数据集成
数据集成是指将来自不同来源、不同格式、不同数据库的数据进行整合,以便提供更全面、更好理解的数据。在实际操作中,数据可能分散存储在多个数据库、文件或应用程序中,经过数据集成,可以将这些分散的数据整合为一个一致的数据集,以便进行分析和应用。 - 数据规约
数据规约是指在数据挖掘和数据分析过程中的一种数据预处理步骤,旨在减少数据的复杂性,提高数据挖掘和分析的效率。主要分为两类,即对行,对列的操作。对行进行降维,减少数据降维;对列进行删减,降低处理难度。
2.3简单介绍相应的方法
3优化模型
3.1优化模型概述
求解优化模型时,把握核心,在给定的条件下找最优
三个要点:目标函数,决策变量,约束条件
在优化模型中,大量涉及运筹学的知识,虽然可能不需要了解运筹学的基础逻辑,但是建议大家自学或者老师教授的时候认真听讲,方便能够深入了解如何来的。做到知其然,更知其所以然。
3.2简单介绍相应的方法
有关的函数规划
从下图可以根据问题种类,来对照寻找适配函数。
有关的图论模型
不知道学习过运筹学的同学DNA有没有动了呢
4预测模型
4.1预测模型概述
预测模型,把握核心未来
预测模型是一种用来预测未来事件或结果的数学模型。它通过分析历史数据或者已知的变量,来建立一个数学关系,以便进行未来事件的预测
4.2简单介绍相应的方法
可以简单分为两大类
根据时间的长短分为中短期预测,长期预测
根据样本的大小分为小样本预测,大样本预测
5评价模型
5.1评价模型概述
评价模型,把握核心指标
5.2简单介绍相应的方法
评价方法大致可以分为两类,其主要区别在于确定权重的方法上
一类是主观定权法,这类方法并不具有非常严谨的数学依据,主要是靠日常的经验总结或者权威的专家来得出权重
一类是客观定权法,这类方法是依靠完善的数据统计,经过数学论证,来得出客观的评价
6分类模型
6.1分类模型概述
分类模型,把握核心区别
由于分类模型和数据预处理,评价模型有部分内容重合,所以不会过多介绍
6.2简单介绍相应的方法
7总结
这是作者的第一次编辑,可能会有内容有所不全,算法存在谬误,望大家能够多多指正,之后会持续更新数学建模等相关内容,点关注不迷路哦。