动态规划算法解决合唱队形问题
在合唱团队中,要形成最壮观的队形,并不是一件容易的事情。在这篇博客中,我们将介绍如何利用动态规划算法解决合唱队形问题,找出合唱队形的最大长度。
问题描述
给定一个学生身高的序列,我们希望从中选择一部分学生,使得他们排成合唱队形。对于合唱队形,要求选出的学生身高先严格递增后严格递减。我们需要计算最长的合唱队形长度。
解决方法
我们可以使用动态规划来解决这个问题。首先,我们创建两个数组 increasing
和 decreasing
,分别用来存储每个学生作为合唱队形起点时的最长递增子序列和最长递减子序列的长度。
具体而言,我们首先从左到右计算以每个学生为结尾的最长递增子序列长度,然后再从右到左计算以每个学生为起始的最长递减子序列长度。最终,我们遍历所有学生,找出递增和递减长度之和减1的最大值,即为合唱队形的最大长度。
以下是使用C++实现的完整代码:
代码实现
#include <iostream>
#include <vector>
#include <algorithm>
int maxChoirLength(std::vector<int>& nums) {
int n = nums.size();
if (n <= 1) {
return n;
}
std::vector<int> increasing(n, 1);
std::vector<int> decreasing(n, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j]) {
increasing[i] = std::max(increasing[i], increasing[j] + 1);
}
}
}
for (int i = n - 2; i >= 0; --i) {
for (int j = n - 1; j > i; --j) {
if (nums[i] > nums[j]) {
decreasing[i] = std::max(decreasing[i], decreasing[j] + 1);
}
}
}
int maxLen = 0;
for (int i = 0; i < n; ++i) {
maxLen = std::max(maxLen, increasing[i] + decreasing[i] - 1);
}
return maxLen;
}
int main() {
std::vector<int> nums = {189, 175, 182, 166, 153, 174, 192, 160, 185, };
int result = maxChoirLength(nums);
std::cout << "合唱队形的最大长度为: " << result << std::endl;
return 0;
}
结果展示
假设我们有一组学生的身高数据为 {189, 175, 182, 166, 153, 174, 192, 160, 185},我们可以使用上述动态规划算法计算出合唱队形的最大长度为7。
总结
通过这个问题的解析,我们展示了如何利用动态规划思想解决一个实际的问题。动态规划在解决很多类似的问题时都能发挥重要作用,因此对动态规划的掌握和理解对于算法与编程都是至关重要的。
希望这篇示例能对您有所帮助!