1. 激光雷达的基本原理
-
工作原理:
-
发射激光:向目标区域发射短脉冲激光(波长多为905nm或1550nm)。
-
接收反射:通过光电探测器接收反射回来的光信号。
-
计算距离:根据激光发射与接收的时间差(Time of Flight, ToF)计算目标距离:
距离=光速×时间差2距离=2光速×时间差 -
构建点云:通过扫描(机械旋转或固态扫描)获取周围环境的密集点云数据,形成高精度3D地图。
-
2. 车载激光雷达的技术分类
(1)按扫描方式
-
机械式激光雷达:
-
通过电机驱动激光发射器和接收器旋转,实现360°扫描。
-
优点:视场角大、分辨率高(如Velodyne的64线雷达)。
-
缺点:体积大、成本高、寿命短(机械部件易磨损)。
-
应用:早期自动驾驶测试车(如Waymo)。
-
-
混合固态激光雷达:
-
使用微机电系统(MEMS)或棱镜实现局部扫描。
-
优点:体积较小、成本降低。
-
代表产品:速腾聚创的M1、禾赛科技的AT128。
-
-
纯固态激光雷达:
-
无机械运动部件,采用光学相控阵(OPA)或Flash技术。
-
优点:体积小、寿命长、适合量产。
-
挑战:扫描角度和分辨率受限(如Flash雷达探测距离短)。
-
代表产品:Ouster的DF系列、Innoviz的固态方案。
-
(2)按波长
-
905nm激光雷达:
-
成本低,但人眼安全性受限(探测距离通常<200米)。
-
主流厂商:Velodyne、禾赛科技。
-
-
1550nm激光雷达:
-
人眼安全性更高,探测距离更远(可达300米以上)。
-
缺点:成本高(需使用铟镓砷探测器)。
-
代表厂商:Luminar、图达通(Innovusion)。
-
3. 车载激光雷达的核心优势
-
高精度:点云分辨率可达厘米级,优于摄像头和毫米波雷达。
-
三维感知:直接输出深度信息,无需依赖算法估算。
-
全天候能力:在弱光、逆光、雾霾等场景下表现稳定(但暴雨/大雪会衰减激光信号)。
-
远距离探测:主流雷达探测距离为150-300米,支持高速自动驾驶决策。
4. 车载激光雷达的应用场景
-
自动驾驶(L4/L5级):
-
实时构建高精地图,识别障碍物(行人、车辆、路障)。
-
与摄像头、毫米波雷达多传感器融合,提升冗余安全性。
-
-
ADAS功能(L2+/L3级):
-
自动紧急制动(AEB)、车道保持(LKA)、自适应巡航(ACC)。
-
示例:小鹏P5、蔚来ET7搭载激光雷达实现城市导航辅助驾驶(NGP/NOP)。
-
-
高精度定位:
-
通过点云匹配(如SLAM算法)实现车辆厘米级定位。
-
5. 激光雷达的挑战与瓶颈
-
成本问题:
-
早期机械雷达成本高达数万美元,目前混合固态方案已降至500-2000美元(目标量产成本<500美元)。
-
-
车规级可靠性:
-
需通过振动、温度(-40℃~85℃)、电磁兼容性(EMC)等车规认证(如ISO 26262)。
-
-
数据处理压力:
-
单颗雷达每秒生成百万级点云数据,需高性能计算平台(如英伟达Orin、华为MDC)实时处理。
-
6. 激光雷达 vs 其他传感器
传感器 | 优势 | 劣势 | 互补性 |
---|---|---|---|
激光雷达 | 高精度3D感知、全天候部分能力 | 成本高、雨雪天性能下降 | 与摄像头融合提升语义理解 |
摄像头 | 高分辨率、语义信息丰富 | 依赖光照、无法直接测距 | 提供颜色和纹理信息 |
毫米波雷达 | 低成本、抗恶劣天气、测速精准 | 分辨率低、无法识别物体细节 | 用于远距离目标跟踪 |
7. 发展趋势
-
固态化与芯片化:
-
MEMS和OPA技术推动激光雷达小型化,逐步集成到车灯或挡风玻璃。
-
-
降本增效:
-
通过VCSEL激光器(垂直腔面发射激光器)和SPAD(单光子雪崩二极管)降低成本。
-
示例:华为96线雷达采用VCSEL+SPAD方案,目标成本<200美元。
-
-
前装量产:
-
2023年后,蔚来、理想、长城等车企多款车型标配激光雷达(1-3颗/车)。
-
-
多传感器融合:
-
激光雷达与4D毫米波雷达、摄像头深度融合,提升自动驾驶系统的鲁棒性。
-
8. 产业链与主要厂商
-
国际厂商:Velodyne(美国)、Luminar(美国)、Innoviz(以色列)、Ouster(美国)。
-
中国厂商:禾赛科技、速腾聚创、图达通、华为、大疆Livox。
-
车企合作案例:
-
蔚来ET7 → 图达通 Falcon(1550nm,120°视场角)。
-
小鹏G9 → 速腾聚创 M1(905nm,120°×25°视场角)。
-
总结
车载激光雷达是自动驾驶从L2向L4演进的关键传感器,尽管面临成本和车规挑战,但其高精度三维感知能力不可替代。随着固态技术成熟和量产规模扩大,未来5年内激光雷达有望成为智能汽车的“标配”,并与摄像头、毫米波雷达共同构建安全的感知系统。