- 博客(4)
- 收藏
- 关注
原创 深度学习与神经网络学习报告(第四周)
文本预处理实例:IMDB影评数据集,有5万条电影评论,每条评论可分为正面或负面,是一个二分类问题,2.5万条训练数据, 2.5万条测试数据。一篇文章可以被简单地看作一串单词序列,甚至是一串字符序列。我们将解析文本的常见预处理 步骤。
2025-05-26 16:19:57
598
原创 深度学习与神经网络学习报告(第三周)
本次学习重点梳理视觉任务中核心数据集、评价指标及经典算法(如 YOLO、全卷积网络等)等知识点。MNIST 与 Fashion-MNISTpython运行 CIFAR-10PASCAL VOC 2012plaintext 标注示例:每个图像对应同名 XML 文件,记录目标边界框、类别等信息。 MS COCOImageNet
2025-05-18 12:53:12
886
原创 深度学习与神经网络学习报告(第一周)
多层感知机(MLP)是一种前馈人工神经网络,由输入层、隐藏层和输出层组成。与单层感知机不同,MLP能够解决非线性可分问题,这得益于其多层结构和非线性激活函数的使用。Adam(Adaptive Moment Estimation):结合动量和自适应学习率。2. 反向传播:误差从输出层反向传播,调整各层权重。隐藏层:进行特征提取和转换(通常1个或多个)合适的权重初始化(如Xavier初始化)2.2 BP算法(反向传播算法)概述。理论上可以逼近任何连续函数。Dropout防止过拟合。有助于加速收敛并减少振荡。
2025-05-12 16:40:25
149
原创 深度学习与神经网络学习报告(第二周)
本周系统性地学习了卷积神经网络(CNN)的核心知识,涵盖其理论基础、关键结构、训练方法、经典模型,并初步掌握了相关开发工具(PyTorch)和数据集(MNIST、COCO、ImageNet)的使用方法。CNN 通过局部感受野(Local Receptive Fields)和权值共享(Weight Sharing)显著减少参数,提高计算效率,并更好地提取空间特征。:模拟人脑视觉机制,逐层提取低阶(边缘、纹理)→ 高阶(物体部件、整体)特征。2.损失计算:交叉熵(分类)、MSE(回归)等。
2025-05-12 16:13:38
326
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人