图(graph.cpp)(回归)

目录

(考完CCF回归!)

图(graph.cpp)

【题目描述】

【数据限制及注意点】

【输入格式】

【输出格式】

【样例输入输出】

【样例解释】

代码


(考完CCF回归!)

图(graph.cpp)

【题目描述】

现在有一张N个点的无向图,每个点编号为1~N,在初始条件下没有边。

给出Q个操作并依次执行,每个操作结束后,输出没有和其他任何点相连的点的个数(也即度为0的点的个数)。

操作Queryi只会有以下两种格式:

·1 u v:在点u和点v间连接一条无向边,数据保证在添加此边前,点u和点v没有连边。

·2 v:移除所有与点v相连的边,点v本身不被移除。

【数据限制及注意点】

·2≤N≤3x105;

·1≤Q≤3x105;

·对于第一种操作,保证1≤u,v≤N,且u≠v;

·对于第二种操作保证1≤v≤N;

·在第一种操作第一次出现前,整张图没有任何边存在;

·所有输入都是整数。

【输入格式】

第一行两个正整数N,Q。

接下来N行,每行一个操作Queryi。

【输出格式】

输出Q行,每行一个整数。

【样例输入输出】

Input

Output

Sample 1

3 7

1 1 2

1 1 3

1 2 3

2 1

1 1 2

2 2

1 1 2

1

0

0

1

0

3

1

Sample 2

2 1

2 1

2

【样例解释】

Description

Sample 1

操作1过后,点1与点2相连,点3不与任何点相连,所以结果为1。

在前3次操作过后,三个点之间两两相连。

第4次操作过后,点1的所有边被删除,所以点1不与任何点相连,但点2点3仍然存在一条边相连,所以第四次操作的答案是1。

Sample 2

代码

#include <bits/stdc++.h>

#define ll long long

using namespace std;

ll n,m,i,fl,x,y,cnt;

set <int> a[300010];

set <int>::iterator it;


main(){

    cin>>n>>m;cnt=n;

    for(i=1;i<=m;i++){

        cin>>fl;

        if(fl==1){

            cin>>x>>y;

            if(a[x].empty()) cnt--;

            if(a[y].empty()) cnt--;

            a[x].insert(y);a[y].insert(x);

        }

        else{

            cin>>x;

            if(!a[x].empty()) cnt++;

            for(it=a[x].begin();it!=a[x].end();it++){

                a[*it].erase(x);

                if(a[*it].empty()) cnt++;

            }

            a[x].clear();

        }

        cout<<cnt<<"\n";

    }

}

#include <bits/stdc++.h>

#define ll long long

using namespace std;

ll n,m,i,fl,x,y,cnt;

set <int> a[300010];

set <int>::iterator it;


main(){

    cin>>n>>m;cnt=n;

    for(i=1;i<=m;i++){

        cin>>fl;

        if(fl==1){

            cin>>x>>y;

            if(a[x].empty()) cnt--;

            if(a[y].empty()) cnt--;

            a[x].insert(y);a[y].insert(x);

        }

        else{

            cin>>x;

            if(!a[x].empty()) cnt++;

            for(it=a[x].begin();it!=a[x].end();it++){

                a[*it].erase(x);

                if(a[*it].empty()) cnt++;

            }

            a[x].clear();

        }

        cout<<cnt<<"\n";

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值