一、项目背景与分析目的
(1)项目背景
客户在电商平台上购物时出于对商品质量的考虑往往会优先选择品牌店铺的商品,用户的自然行为容易导致平台中小店铺销量惨淡,甚至可能难以维持经营,大店铺的一家独大不仅会影响中小店铺的生存,而且会对平台发展产生一定威胁,大店铺包揽大部分用户可能会另起炉灶构建自己的平台,进而会使得原有电商平台遭受损失。平台采取提升曝光量的方式对中小店铺进行流量扶持,分析扶持效果。
京东获得店铺的所有商品 API 返回值说明
item_search_shop-获得店铺的所有商品
名称 | 类型 | 必须 | 描述 |
---|---|---|---|
key | String | 是 | 调用key(必须以GET方式拼接在URL中) |
secret | String | 是 | 调用密钥 |
api_name | String | 是 | API接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等] |
cache | String | 否 | [yes,no]默认yes,将调用缓存的数据,速度比较快 |
result_type | String | 否 | [json,jsonu,xml,serialize,var_export]返回数据格式,默认为json,jsonu输出的内容中文可以直接阅读 |
lang | String | 否 | [cn,en,ru]翻译语言,默认cn简体中文 |
version | String | 否 | API版本 |
请求参数:seller_nick=特步平途专卖店&page=1
参数说明:seller_nick:店铺名称
响应参数
(2)分析目的
对比大店铺与中小店铺在转化率、订单量等方面差异,分析是否存在大店铺明显挤压小店铺生存空间的情况,平台对于中小店铺的流量扶持应该采取何种策略,基于A/B测试结果给出决策建议。
二、分析及设计思路
(1)分析思路
(2)学习尝试
1、假设检验学习及应用
2、A/B测试分析实践
三、数据准备
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
data=pd.read_csv('电商数据.csv')
data
数据说明:数据内容包括电商平台A、C类店铺2020年5月-6月份的销售数据,具体字段包括曝光量、点击量、下单量和店铺类型。其中“组”字段为电商平台的优化策略,D组为对照组;店铺类型中A类店铺为大店铺,C类店铺为中小店铺。
四、平台店铺销售特征分析
(1)平台店铺销售数据整理(对照组)
data_d = data[data['组'] == 'D']
data_dagg = data_d.groupby(['店铺类型','riqi']).agg(['mean','sum'])
data_dagg.reset_index(inplace=True)
data_dagg = data_dagg.drop(['id'],axis = 1)
data_dagg['曝光平均转化率']=data_dagg['点击量']['mean']/data_dagg['曝光量']['mean']*100
data_dagg['点击平均转化率']=data_dagg['下单量']['mean']/data_dagg['点击量']['mean']*100
data_dagg['曝光-下单平均转化率']=data_dagg['下单量']['mean']/data_dagg['曝光量']['mean']*100
data_dagg
数据整理:按照店铺类型和日期字段聚合,计算不同类型店铺曝光量、点击量、下单量总量和平均值;计算曝光-点击、点击-下单、曝光-下单平均转化率
(2)曝光量及曝光转化率分析
data_dagg_A = data_dagg[data_dagg['店铺类型']=='A'][['riqi','曝光量','曝光平均转化率']]
data_dagg_A = data_dagg_A.rename(columns={'曝光量':'曝光量A','曝光平均转化率':'曝光平均转化率A'})
data_dagg_C = data_dagg[data_dagg['店铺类型']=='C'][['riqi','曝光量','曝光平均转化率']]
data_dagg_C = data_dagg_C.rename(columns={'曝光量':'曝光量C','曝光平均转化率':'曝光平均转化率C'})
data_dagg_bg = pd.merge(data_dagg_A,data_dagg_C,left_on=data_dagg_A['riqi'],right_on=data_dagg_C['riqi'])
data_dagg_bg['曝光量A比例'] = data_dagg_bg['曝光量A']['sum']/(data_dagg_bg['曝光量A']['sum']+data_dagg_bg['曝光量C']['sum'])*100
data_dagg_bg['曝光量C比例'] = data_dagg_bg['曝光量C']['sum']/(data_dagg_bg['曝光量A']['sum']+data_dagg_bg['曝光量C']['sum'])*100
data_dagg_bg
fig = plt.figure(figsize=(20,5))
ax1 = fig.add_subplot(131)
ax1.barh(data_dagg_bg['key_0'],data_dagg_bg['曝光量A比例'],label='曝光量A比例',height=0.5)
ax1.barh(data_dagg_bg['key_0'],data_dagg_bg['曝光量C比例'],left =data_dagg_bg['曝光量A比例'],height=0.5,label='曝光量C比例')
ax1.legend()
ax2 = fig.add_subplot(132)
ax2.plot(data_dagg_bg['key_0'],data_dagg_bg['曝光量A']['mean'],label='曝光量A均值')
ax2.plot(data_dagg_bg['key_0'],data_dagg_bg['曝光量C']['mean'],label='曝光量C均值')
ax2.legend()
ax3 = fig.add_subplot(133)
ax3.plot(data_dagg_bg['key_0'],data_dagg_bg['曝光平均转化率A'],label='曝光平均转化率A')
ax3.plot(data_dagg_bg['key_0'],data_dagg_bg['曝光平均转化率C'],label='曝光平均转化率C')
ax3.legend()
plt.show()
读图:A类店铺曝光量明显更高,占比到达70%左右,约为C类店铺的2倍,两类店铺日均曝光量分别约为30和15;两类店铺曝光-点击转化率相差不大,A类店铺在11.6%,C类店铺在10.6%左右
解图:平台店铺曝光主要以A类店铺为主,原因可能在于A类店铺在店铺曝光方面投入了更多资源;A、C类店铺曝光量差异大但曝光转化率差异不大,说明两类店铺的曝光UV没有太大差别且都不是很高,平台运营方可以考虑优化店铺曝光页面的展示效果,提升用户的点击兴趣。
(3)点击量及点击转化率分析
data_dagg_A = data_dagg[data_dagg['店铺类型']=='A'][['riqi','点击量','点击平均转化率']]
data_dagg_A = data_dagg_A.rename(columns={'点击量':'点击量A','点击平均转化率':'点击平均转化率A'})
data_dagg_C = data_dagg[data_dagg['店铺类型']=='C'][['riqi','点击量','点击平均转化率']]
data_dagg_C = data_dagg_C.rename(columns={'点击量':'点击量C','点击平均转化率':'点击平均转化率C'})
data_dagg_dj = pd.merge(data_dagg_A,data_dagg_C,left_on=data_dagg_A['riqi'],right_on=data_dagg_C['riqi'])
data_dagg_dj['点击量A比例'] = data_dagg_dj['点击量A']['sum']/(data_dagg_dj['点击量A']['sum']+data_dagg_dj['点击量C']['sum'])*100
data_dagg_dj['点击量C比例'] = data_dagg_dj['点击量C']['sum']/(data_dagg_dj['点击量A']['sum']+data_dagg_dj['点击量C']['sum'])*100
data_dagg_dj
fig = plt.figure(figsize=(20,5))
ax1 = fig.add_subplot(131)
ax1.barh(data_dagg_dj['key_0'],data_dagg_dj['点击量A比例'],label='点击量A比例',height=0.5)
ax1.barh(data_dagg_dj['key_0'],data_dagg_dj['点击量C比例'],left =data_dagg_dj['点击量A比例'],height=0.5,label='点击量C比例')
ax1.legend()
ax2 = fig.add_subplot(132)
ax2.plot(data_dagg_dj['key_0'],data_dagg_dj['点击量A']['mean'],label='点击量A均值')
ax2.plot(data_dagg_dj['key_0'],data_dagg_dj['点击量C']['mean'],label='点击量C均值')
ax2.legend()
ax3 = fig.add_subplot(133)
ax3.plot(data_dagg_bg['key_0'],data_dagg_dj['点击平均转化率A'],label='点击平均转化率A')
ax3.plot(data_dagg_bg['key_0'],data_dagg_dj['点击平均转化率C'],label='点击平均转化率C')
ax3.legend()
plt.show()
读图:A类店铺的点击量明显更高,占比到达70%左右,约为C类店铺的2倍,两类店铺日均点击量分别约为3.5次和1.5次;两类店铺点击-下单转化率相差较大,A类店铺在21%左右,C类店铺在7%左右
解图:A、C类店铺受曝光量影响,点击量也存在相同的差异水平,说明曝光对店铺的引流作用巨大;两类店铺的点击-下单转化率具有明显差异,应该体现在中小店铺在客户评价、商品丰富度、产品质量和详情介绍等方面与大店铺存在差距,有待基于店铺差异数据进一步查找原因。
(4)下单量及曝光-下单转化率分析
data_dagg_A = data_dagg[data_dagg['店铺类型']=='A'][['riqi','下单量','曝光-下单平均转化率']]
data_dagg_A = data_dagg_A.rename(columns={'下单量':'下单量A','曝光-下单平均转化率':'曝光-下单平均转化率A'})
data_dagg_C = data_dagg[data_dagg['店铺类型']=='C'][['riqi','下单量','曝光-下单平均转化率']]
data_dagg_C = data_dagg_C.rename(columns={'下单量':'下单量C','曝光-下单平均转化率':'曝光-下单平均转化率C'})
data_dagg_xd = pd.merge(data_dagg_A,data_dagg_C,left_on=data_dagg_A['riqi'],right_on=data_dagg_C['riqi'])
data_dagg_xd['下单量A比例'] = data_dagg_xd['下单量A']['sum']/(data_dagg_xd['下单量A']['sum']+data_dagg_xd['下单量C']['sum'])*100
data_dagg_xd['下单量C比例'] = data_dagg_xd['下单量C']['sum']/(data_dagg_xd['下单量A']['sum']+data_dagg_xd['下单量C']['sum'])*100
data_dagg_xd
fig = plt.figure(figsize=(20,5))
ax1 = fig.add_subplot(131)
ax1.barh(data_dagg_xd['key_0'],data_dagg_xd['下单量A比例'],label='下单量A比例',height=0.5)
ax1.barh(data_dagg_xd['key_0'],data_dagg_xd['下单量C比例'],left =data_dagg_xd['下单量A比例'],height=0.5,label='下单量C比例')
ax1.legend()
ax2 = fig.add_subplot(132)
ax2.plot(data_dagg_xd['key_0'],data_dagg_xd['下单量A']['mean'],label='下单量A均值')
ax2.plot(data_dagg_xd['key_0'],data_dagg_xd['下单量C']['mean'],label='下单量C均值')
ax2.legend()
ax3 = fig.add_subplot(133)
ax3.plot(data_dagg_xd['key_0'],data_dagg_xd['曝光-下单平均转化率A'],label='曝光-下单平均转化率A')
ax3.plot(data_dagg_xd['key_0'],data_dagg_xd['曝光-下单平均转化率C'],label='曝光-下单平均转化率C')
ax3.legend()
plt.show()
读图:A类店铺的下单量占比达到90%左右,约为C类店铺下单量的8-9倍左右;两类店铺曝光-下单转化率也在3倍差距左右
解图:A、C类店铺受曝光量和点击-下单转化率影响,下单量差距进一步扩大,中小店铺相比于大店铺要提高销量可以采取提高曝光量和提升下单转化率两种途径。
(5)店铺销售特征分析总结
a、基于以上数据分析可知,电商平台中大店铺占据主导优势,在曝光量、点击量和下单量方面均占平台AC类店铺总比重的70%以上,下单量甚至达到了90%左右,说明电商平台大店铺确实在一定程度上挤压了中小店铺的生存空间;
b、电商平台大店铺的曝光度约为中小店铺的两倍,原因在于大店铺可以有更多的资本用于曝光资源投放;
c、在曝光到点击的转化过程中两者的转化率差异不大,说明大店铺和中小店铺在商品曝光UV的吸引力方面没有太大差别,整体曝光-点击转化率不高(据资料统计某宝为17%),平台可以考虑进行页面优化;
d、从点击到下单的转化过程中两者的转化率达到3倍左右,说明大店铺和中小店铺在商品详情页对用户的影响差异较大,可能在于商品的用户评价、详情介绍、商品的丰富度等方面存在一定差距。