面试考点
一、缓存 面试官:什么是缓存穿透 ? 怎么解决 ? 候选人: (穿透无中生有Key,布隆过滤NULL隔离) 嗯~~,我想一下
缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。这种情况大概率是遭到了攻击。 解决方案的话,我们通常都会用布隆过滤器来解决它。
面试官:好的,你能介绍一下布隆过滤器吗? 候选人:
(不存在的一定不存在,存在的不一定存在)
嗯,是这样~
布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是redisson实现的布隆过滤器。
它的底层主要是先去初始化一个比较大数组,里面存放的二进制0或1。在一开始都是0,当一个key来了之后经过3次hash计算,模于数组长度找到数据的下标然后把数组中原来的0改为1,这样的话,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。
当然是有缺点的,布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%,其实这个误判是必然存在的,要不就得增加数组的长度,其实已经算是很划分了,5%以内的误判率一般的项目也能接受,
不至于高并发下压倒数据库。
补充:其实还有一种解决方案——返回空数据(由于是针对项目,所以直接回答了项目中用到的)
面试官:什么是缓存击穿 ? 怎么解决 ? 候选人: (击穿热点Key过期,锁与非期解难题) 嗯!!
缓存击穿的意思是对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。
解决方案有两种方式:
第一可以使用互斥锁:
当缓存失效时,不立即去load db,先使用如 Redis 的 setnx 去设置一个互斥锁,当操作成功返回时再进行 load db的操作并回设缓存,否则重试get缓存的方法
第二种方案可以设置当前key逻辑过期,大概是思路如下:
①:在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间
②:当查询的时候,从redis取出数据后判断时间是否过期
③:如果过期则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据不是最新
当然两种方案各有利弊:
如果选择数据的强一致性,建议使用分布式锁的方案,性能上可能没那么高,锁需要等,也有可能产生死锁的问题如果选择key的逻辑删除,则优先考虑的高可用性,性能比较高,但是数据同步这块做不到强一致。
面试官:什么是缓存雪崩 ? 怎么解决 ?
候选人: (雪崩大量Key过期,过期时间不唯一) 嗯!!
缓存雪崩意思是设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多key,击穿是某一个key缓存。
解决方案主要是可以将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,,就很难引发集体失效的事件。
打油诗《缓存三兄弟》
面试官:mysql的数据如何与redis进行同步呢?双写一致性 候选人:嗯!就说我最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,数据同步可以有一定的延时(符合大部分业务)
我们当时采用的阿里的canal组件实现数据同步:不需要更改业务代码,部署一个canal服务。canal服务把自己伪装成mysql的一个从节点,当mysql数据更新以后,canal会读取binlog数据,然后在通过canal的客户端获取到数据,更新缓存即可
面试官:mysql的数据如何与redis进行同步呢?双写一致性 候选人: 嗯!就说我最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,需要让数据库与redis高度保持一致,因为要求时效性比较高,我们当时采用的读写锁保证的强一致性。
我们采用的是redisson实现的读写锁,在读的时候添加共享锁,可以保证读读不互斥,读写互斥。当我们更新数据的时候,添加排他锁,它是读写,读读都互斥,这样就能保证在写数据的同时是不会让其他线程读数据的,避免了脏数据。这里面需要注意的是读方法和写方法上需要使用同一把锁才行。
面试官:那这个排他锁是如何保证读写、读读互斥的呢? 候选人:其实排他锁底层使用也是setnx,保证了同时只能有一个线程操作锁住的方法。 利用redis 的setNx 方法使得满足分布式系统或集群模式下多进程可见并且互斥的锁。
面试官:你听说过延时双删吗?为什么不用它呢? 候选人: 延迟双删,如果是写操作,我们先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据,其中这个延时多久不太好确定,在延时的过程中可能会出现脏数据,并不能保证强一致性,所以没有采用它。
补充
(双写一致性)可以有一定延迟——
即异步通知——有两种方式——
MQ
Canal
面试官:redis做为缓存数据的持久化是怎么做的?
候选人:在Redis中提供了两种数据持久化的方式: 1、RDB 2、AOF
面试官:这两种持久化方式有什么区别呢? 候选人:
RDB是一个快照文件,它是把redis内存存储的数据写到磁盘上,当redis实例宕机恢复数据的时候,方便从RDB的快照文件中恢复数据。
AOF的含义是追加文件**,当redis操作写命令的时候,都会存储这个文件中,当redis实例宕机恢复数据的时候,会从这个文件中再次执行一遍命令来恢复数据。
面试官:这两种方式,哪种恢复的比较快呢? 候选人:
RDB因为是二进制文件,在保存的时候体积也是比较小的,它恢复的比较快,但是它有可能会丢数据,我们通常在项目中也会使用AOF来恢复数据,虽然AOF恢复的速度慢一些,但是它丢数据的风险要小很多,在AOF文件中可以设置刷盘策略,我们当时设置的就是每秒批量写入一次命令
面试官:Redis的数据过期策略有哪些 ? 候选人:
嗯~,在redis中提供了两种数据过期删除策略
第一种是惰性删除,在设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key。
第二种是 *定期删除*,就是说每隔一段时间,我们就对一些key进行检查,删除里面过期的key
定期清理的两种模式:
-
SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的 hz 选项来调整这个次数
-
FAST模式执行频率不固定,每次事件循环会尝试执行,但两次间隔不低于2ms,每次耗时不超过1ms
Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用。
面试官:Redis的数据淘汰策略有哪些 ? 候选人:
嗯,这个在redis中提供了很多种,默认是noeviction,不删除任何数据,内部不足直接报错
是可以在redis的配置文件中进行设置的,里面有两个非常重要的概念,一个是LRU,另外一个是LFU
LRU的意思就是最少最近使用,用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
LFU的意思是最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高
我们在项目设置的allkeys-lru,挑选最近最少使用的数据淘汰,把一些经常访问的key留在redis中
面试官:数据库有1000万数据 ,Redis只能缓存20w数据, 如何保证Redis中的数据都是热点数据 ? 候选人:
嗯,我想一下~~
可以使用 allkeys-lru (挑选最近最少使用的数据淘汰)淘汰策略,那留下来的都是经常访问的热点数据
面试官:Redis的内存用完了会发生什么? 候选人:
嗯~,这个要看redis的数据淘汰策略是什么,如果是默认的配置,redis内存用完以后则直接报错。
我们当时设置的 allkeys-lru 策略。把最近最常访问的数据留在缓存中。