- 博客(2085)
- 收藏
- 关注
原创 基于脱敏算法的综合医疗信息管理系统
本文设计并实现了一个基于脱敏算法的综合医疗信息管理系统,旨在解决医疗数据隐私保护问题。系统采用SpringBoot和Vue框架,通过优化脱敏算法实现敏感数据的安全传输与存储。研究分析了现有医疗系统的不足,提出将脱敏技术应用于电子病历、药品管理等关键环节。系统实现了诊断记录、药品管理、预约挂号等功能模块,并通过测试验证了其安全性和可用性。结果表明,该系统能有效提升医疗数据管理的隐私保护水平,为医疗机构提供可靠的信息安全保障。
2025-12-24 08:50:19
423
原创 基于推荐算法的个性化电影推荐系统设计与实现文献综述
本文研究了基于推荐算法的个性化电影推荐系统设计与实现。首先分析了系统研究背景与意义,指出个性化推荐能解决海量电影资源下的用户选择困难问题。通过综述国内外研究现状,比较了基于内容、协同过滤、深度学习等主流推荐算法的优缺点。系统设计采用SpringBoot+Vue框架,实现用户管理、电影推荐、论坛交流等功能模块,并融合多种推荐算法提高准确性。研究结果表明,个性化电影推荐系统能有效提升用户体验,为电影产业发展提供技术支持。未来可进一步优化算法性能,加强数据隐私保护。
2025-12-24 08:49:45
337
原创 基于推荐算法的个性化电影推荐系统设计与实现开题报告
本文是湖北第二师范学院本科毕业论文开题报告,研究基于推荐算法的个性化电影推荐系统。选题依据当前电影推荐系统存在的算法单一、用户画像不准确等问题,采用SpringBoot和Vue框架开发多功能平台。研究内容包括系统架构设计、用户/管理员功能实现、推荐算法优化等,创新点在于混合推荐算法和用户隐私保护。研究难点在于算法优化与数据安全。进程安排2024年11月至2025年5月完成开发测试和论文撰写。参考文献涵盖国内外最新研究成果,为系统设计提供理论支持。
2025-12-24 08:49:15
426
原创 基于图神经网络的未成年保护法知识问答系统的设计与实现开题报告
摘要:本研究旨在设计并实现一个基于图神经网络的未成年保护法知识问答系统,以解决未成年人法律知识获取不足的问题。系统通过图神经网络技术分析法律文本关系,结合自然语言处理实现智能问答。研究内容包括数据整合、神经网络建模和用户界面设计等关键技术,采用文献研究、数据收集、模型训练等方法。项目具有显著的社会价值,可为未成年人提供便捷的法律咨询服务,促进法律知识普及。技术路线成熟,经济和社会可行性良好,预计将构建一个高效、准确的智能法律问答平台。
2025-12-24 08:48:40
535
原创 基于随机森林算法的道路交通事故数据分析及预测开题报告
因此,对道路交通事故数据进行深入分析,挖掘事故发生的规律和影响因素,对于制定有效的交通安全管理措施、预防事故发生、降低事故损失具有重要意义。为了有效应对这一挑战,各国学者和科研机构纷纷开展道路交通事故数据分析及预测研究,旨在通过挖掘事故数据中的规律和趋势,为交通管理部门提供科学依据,以制定有效的预防措施和应对策略。数据分析方法:在数据分析方面,研究者们采用了多种统计方法和数据挖掘技术,如描述性统计分析、相关性分析、聚类分析、决策树、支持向量机等,以揭示事故发生的规律和影响因素。最后由学院盖章备案保存。
2025-12-24 08:48:09
204
原创 基于随机森林的线上教育平台用户行为分析系统文献综述
本文设计了一个基于随机森林算法的线上教育平台用户行为分析系统。该系统通过机器学习技术深度挖掘用户学习行为数据,实现个性化学习路径推荐和资源优化配置。研究采用Flask框架开发后端功能,结合ECharts.js进行数据可视化,解决了传统平台在用户交互体验和行为分析方面的不足。创新点在于将随机森林算法应用于用户行为聚类分析,为教育机构提供精准的教学评估依据。研究结果表明,该系统能有效提升学习效果和用户满意度,为在线教育的智能化发展提供了技术参考。未来将重点优化算法模型和系统功能,以应对在线教育平台的个性化需求。
2025-12-24 08:47:33
283
原创 基于随机森林的共享单车投放量分析与预测中期检查报告
本文为河北东方学院本科毕业论文中期检查报告,题目为《基于随机森林的共享单车投放量分析与预测》。报告总结了已完成工作:实现用户管理、数据查看、数据处理、可视化分析和预测五大模块功能,其中随机森林算法预测效果良好。针对模型调优和数据可视化响应慢等问题,采用网格搜索和前端优化等措施加以改进。下一步计划整合K-Means聚类算法,优化可视化模块,完善后台管理功能。指导教师和系/教研室将跟进指导后续工作。
2025-12-24 08:47:01
212
原创 基于随机森林的共享单车投放量分析与预测任务书
本文构建基于随机森林算法的共享单车投放量预测模型,旨在优化共享单车运营策略。研究内容包括:1)分析共享单车投放管理现状及随机森林算法原理;2)通过数据爬取和预处理建立预测模型;3)设计包含用户管理、数据查看、预测分析等模块的系统;4)进行系统测试与验证。研究采用真实运营数据,运用Pandas进行数据处理,Echarts实现可视化,最终构建具有实用价值的预测系统。论文要求数据真实完整,模型准确可靠,撰写规范严谨,为共享单车运营提供决策支持。
2025-12-24 08:46:26
185
原创 基于随机森林的共享单车投放量分析与预测任务书
摘要:本研究基于随机森林算法构建共享单车投放量预测模型,旨在优化企业运营策略。通过数据爬取、预处理和特征分析,建立包含用户管理、数据处理、预测及可视化等功能的系统。研究采用黑盒与白盒测试相结合的方法验证系统性能,最终形成10000字以上的规范论文。论文创新点在于将随机森林算法应用于共享单车投放预测,为行业提供决策支持。研究周期为2024年9月至2025年5月,包含开题、实施、中期检查等规范流程。(150字)
2025-12-24 08:45:52
152
原创 基于随机森林的共享单车投放量分析与预测开题报告
本文针对共享单车投放量管理问题,提出基于随机森林算法的预测模型。研究通过分析历史骑行数据、天气和时间等因素,构建包含用户管理、数据处理、预测分析和可视化等模块的系统。采用Python技术栈实现数据预处理和模型训练,利用Echarts.js进行结果展示。研究旨在优化资源配置,提高预测准确性,为共享单车企业提供科学决策支持。论文工作进度安排合理,技术方案可行,具有理论创新和实践应用价值。
2025-12-24 08:45:21
132
原创 基于随机森林的共享单车投放量分析与预测
摘要:本研究针对共享单车投放量管理问题,提出基于随机森林算法的预测模型。通过分析历史使用数据,结合用户需求和交通状况等多因素,建立精准预测系统。系统采用Flask框架和SQLite数据库技术,实现用户管理、数据分析和可视化展示等功能。测试结果表明,该系统能够有效预测投放量,为共享单车企业提供科学决策支持,优化资源配置,提升用户体验。研究成果对共享单车行业可持续发展具有重要实践价值。
2025-12-24 08:44:51
150
原创 基于随机森林的共享单车投放量分析与预测
摘要:本研究基于随机森林算法,构建共享单车投放量预测模型,旨在解决城市共享单车投放量不合理导致的资源浪费与交通压力问题。通过Flask框架与SQLite数据库技术实现系统开发,包含用户管理、数据分析和可视化等功能模块。系统测试表明,该模型能有效预测单车需求分布,为投放决策提供数据支持,有助于优化用户体验和城市交通管理。研究成果为共享单车行业可持续发展提供了智能化解决方案,具有重要的实践价值。
2025-12-24 08:44:16
118
原创 基于随机森林的道路交通事故数据分析及预测文献综述
本文基于随机森林算法构建道路交通事故数据分析及预测平台,旨在通过大数据和机器学习技术提升道路安全管理水平。研究采用和鲸平台交通事故数据集,运用Pandas进行数据清洗与预处理,利用随机森林算法进行特征选择和模型训练,并通过ECharts.js实现数据可视化。研究对比了随机森林与多元线性回归等算法的预测性能,开发了包含数据管理和用户权限功能的后台系统。结果表明,该方法能有效预测事故风险,为交通管理决策提供支持。研究为智能交通系统发展提供了新思路,但仍需在算法优化和数据质量方面进一步改进。
2025-12-24 08:43:43
156
原创 基于随机森林的道路交通事故数据分析及预测开题报告
因此,对道路交通事故数据进行深入分析,挖掘事故发生的规律和影响因素,对于制定有效的交通安全管理措施、预防事故发生、降低事故损失具有重要意义[2]。为了有效应对这一挑战,各国学者和科研机构纷纷开展道路交通事故数据分析及预测研究,旨在通过挖掘事故数据中的规律和趋势,为交通管理部门提供科学依据,以制定有效的预防措施和应对策略[8]。数据获取与处理:研究者们通常利用公开的交通事故数据集,如政府交通部门发布的数据、保险公司的事故记录等,作为研究的基础[9]。最后由学院盖章备案保存。
2025-12-24 08:43:11
425
原创 基于数据挖掘的中国新能源汽车销量分析开题报告
与此同时,该研究还能够推动整个产业链的良性互动和协作,从原材料供应,到技术研发,再到市场销售,促进上下游企业更有效地衔接和发展,最终增强中国新能源汽车产业在国际市场的竞争力和影响力。通过这些系统化的分析和预测,研究将为新能源汽车产业的发展提供有力的数据支持和科学依据,助力行业的可持续增长。Carlson[3]在文章中利用收集的美国汽车市场年度数据,分析了新能源汽车需求量的影响因素,研究得出结论,对新能源汽车需求量影响最大的是可支配收入,而汽车的油价和汽车价格对汽车需求结构的影响比较大。
2025-12-24 08:42:39
320
原创 基于数据挖掘的中国新能源汽车销量分析
与此同时,该研究还能够推动整个产业链的良性互动和协作,从原材料供应,到技术研发,再到市场销售,促进上下游企业更有效地衔接和发展,最终增强中国新能源汽车产业在国际市场的竞争力和影响力。通过这些系统化的分析和预测,研究将为新能源汽车产业的发展提供有力的数据支持和科学依据,助力行业的可持续增长。Carlson[3]在文章中利用收集的美国汽车市场年度数据,分析了新能源汽车需求量的影响因素,研究得出结论,对新能源汽车需求量影响最大的是可支配收入,而汽车的油价和汽车价格对汽车需求结构的影响比较大。
2025-12-24 08:42:06
490
原创 基于数据挖掘的智能图书馆推送系统的设计与实现
本文设计并实现了一个基于B/S架构的智能图书馆推送系统。系统采用Spring Boot+MyBatis+Vue技术栈,实现了用户管理、图书管理、公告管理等功能模块,并整合了协同过滤和内容推荐两种智能推荐算法。通过需求分析、系统设计、实现与测试等完整开发流程,构建了一个界面友好、功能完善的图书馆管理系统。测试结果表明系统运行稳定,能够有效提升图书馆管理效率和服务质量。未来将重点优化系统性能和安全性,并探索移动端整合方案。
2025-12-24 08:41:35
222
原创 基于数据挖掘的音乐流行趋势分析与预测
摘要:本研究基于数据挖掘技术开发了音乐流行趋势分析与预测系统,采用Flask框架构建Web应用,集成MySQL数据库实现数据存储。系统通过分析用户行为、歌曲特征等多维度数据,运用Pandas进行数据处理,结合数据挖掘算法预测音乐流行趋势。研究实现了用户管理、歌曲热度分析、歌手排名及音乐预测等功能模块,并通过黑盒/白盒测试验证了系统性能。该系统为音乐平台提供精准推荐服务,帮助从业者把握市场动向,促进音乐产业健康发展。关键词:数据挖掘;音乐预测;Flask框架;MySQL;Pandas
2025-12-24 08:41:03
376
原创 基于数据挖掘的线上教育平台用户行为价值分析系统文献综述
本文设计并实现了一个基于数据挖掘的线上教育平台用户行为价值分析系统。该系统运用Flask框架、机器学习算法和数据可视化技术,实现了用户行为聚类分析、个性化学习推荐等功能。研究通过分析用户学习行为数据,为成人学习者提供定制化学习路径,同时优化平台运营管理。创新点在于采用机器学习算法深度挖掘用户行为模式,难点在于确保数据安全与推荐精准性。系统有效提升了在线教育的个性化和智能化水平,为教育平台优化提供了数据支持。未来将继续完善系统功能,提升用户体验。
2025-12-24 08:40:04
386
原创 基于数据挖掘的线上教育平台用户行为价值分析系统开题报告
本研究旨在开发一个基于数据挖掘的线上教育平台用户行为价值分析系统。通过收集用户行为数据,采用改进的RFMS模型进行聚类分析,并实现数据可视化展示,帮助平台优化课程推荐和资源分配。研究重点包括数据处理、算法优化和系统性能保障。创新点在于引入结合学生特征的RFMS模型和集成化后台管理功能。研究计划2024年10月启动,2025年4月完成。该系统将为提升在线教育平台的服务质量和用户体验提供技术支持。
2025-12-24 08:39:33
232
原创 基于深度学习的草莓病害检测开题报告
本研究基于深度学习技术开发草莓病害检测系统,通过收集草莓常见病害图像构建数据集,采用YOLOv8等目标检测模型进行训练优化。系统包含图像采集、预处理、病害检测和结果展示模块,支持多种检测方式。研究重点解决病害特征提取、模型泛化能力等关键技术问题,采用数据增强、迁移学习等方法提升性能。技术路线包括数据预处理、模型训练、系统开发和性能评估,使用Python、PyTorch等工具实现。该系统可提高病害检测效率,为精准农业提供决策支持,具有较好的技术可行性和应用前景。研究计划分阶段实施,最终完成系统开发与论文撰写。
2025-12-23 09:16:32
414
原创 基于深度学习的布匹缺陷检测系统开题报告
摘要:本文探讨基于深度学习的布匹缺陷检测系统开发。研究背景指出传统人工检测效率低且易出错,而深度学习技术能显著提升检测精度与效率。文章综述了布匹缺陷检测的技术发展历程,重点分析CNN、YOLO等深度学习算法在缺陷识别中的应用,并探讨多尺度特征融合和注意力机制等优化方法。研究拟解决实时检测、结果展示、模型优化等关键问题,采用YOLO系列模型、WebRTC等技术实现系统功能。预期成果将提升纺织行业质量控制水平,推动生产自动化进程。全文约150字。
2025-12-23 09:15:56
413
原创 基于深度学习的PCB缺陷检测系统的设计与实现
摘要:本文设计并实现了一种基于深度学习的PCB缺陷检测系统,采用YOLOv8算法进行图像识别,结合PyQt5框架开发图形用户界面。系统具备用户管理、图片预测、视频识别、摄像头实时检测和批量检测等功能,支持多种输入方式,能够自动识别PCB缺陷并提供修复建议。通过MySQL数据库实现数据存储管理,并可视化模型训练过程。实验表明,该系统在准确率、召回率等指标上表现优异,显著提升了PCB缺陷检测的自动化水平,对电子制造业质量控制具有重要意义。关键词:深度学习;PCB缺陷检测;YOLOv8;PyQt5;MySQL;自
2025-12-23 09:15:01
566
原创 基于深度网络的垃圾识别与分类算法研究任务书开题报告
其中,ResNet(残差网络)作为CNN的一种变体,以其优越的性能,在垃圾分类任务中表现出色。在垃圾识别任务中,通过对ResNet模型的训练和优化,可以进一步探索深层神经网络在特定场景下的表现,为模型的设计和参数调优提供参考。从实用价值来看,智能化的垃圾分类系统能够大大提高垃圾分类的准确性和效率,减轻人工分类的负担,推动垃圾分类的普及和实施。从理论意义来看,本研究将深度学习算法应用于垃圾分类领域,探索了ResNet神经网络在垃圾分类任务中的性能和适用性,为深度学习在环境科学领域的应用提供了新的思路和方向。
2025-12-23 09:14:30
308
原创 基于社交媒体的舆情分析与情感预测系统设计与实现选题申请表
摘要:本毕业设计选题为"基于社交媒体的舆情分析与情感预测系统设计与实现",由人工智能学院刘玮副教授指导。研究旨在构建一个基于Python Flask框架和MySQL/SQLite数据库的自动化分析系统,实现社交媒体数据采集、舆情热点检测和情感预测功能。系统特色在于采用机器学习算法实现自动化分析,提高处理效率和准确性,为企业和政府提供决策支持。最终成果将包括完整系统和论文,具有实际应用价值,可推动智能分析技术的发展。设计周期为2024年11月至2025年5月,预计上机时数180小时。
2025-12-23 09:08:49
138
原创 基于社交媒体的舆情分析与情感预测系统设计与实现选题表
本文介绍了一个基于社交媒体的舆情分析与情感预测系统设计方案。系统采用Python Flask框架,通过爬虫技术获取社交媒体数据,利用朴素贝叶斯算法进行情感分析,并实现数据可视化展示。主要功能包括数据采集存储、舆情分析、情感预测、词云生成等。该系统具有自动化处理、准确性高、可扩展性强等特点,能为企业和政府机构提供决策支持。最终成果将形成完整的功能系统及相关论文,具有实际应用价值。
2025-12-23 09:08:18
187
原创 基于社交媒体的舆情分析与情感预测系统设计与实现任务书(3)
本文设计并实现了一个基于社交媒体的舆情分析与情感预测系统。系统通过爬取社交媒体数据,利用机器学习算法进行情感分析,并提供数据可视化功能。主要模块包括用户管理、数据采集、文本分析、词云生成和后台管理等。研究采用requests、BeautifulSoup、jieba等工具实现数据采集与处理,运用朴素贝叶斯算法进行情感预测。论文要求完成10000-12000字,引用20篇文献(含2篇英文),严格遵循学术规范。项目周期为2024年11月至2025年5月,包含需求分析、系统开发、论文撰写及答辩等环节。
2025-12-23 09:07:43
149
原创 基于社交媒体的舆情分析与情感预测系统设计与实现开题报告
摘要:本研究旨在设计并实现一个基于社交媒体的舆情分析与情感预测系统。通过爬取微博、微信等平台数据,采用Flask框架构建前后端分离系统,结合MySQL数据库存储数据。系统功能包括用户管理、数据爬取与清洗、可视化分析(使用ECharts.js)、情感分析(朴素贝叶斯算法)及词云图生成等模块。研究将探索自然语言处理和机器学习在社交媒体舆情分析中的应用,为政府和企业提供决策支持。系统开发包含环境准备、模块实现、测试优化等步骤,最终形成完整的舆情监控解决方案。(149字)
2025-12-23 09:07:12
374
原创 基于日志分析的计算机系统故障排查工具的设计与实现选题表
本文介绍了计算机科学技术学院2024届网络工程专业的毕业设计选题——《基于日志分析的计算机系统故障排查工具的设计与实现》。该选题由吴佳楠教授指导,属于设计类课题。针对当前计算机系统故障排查效率低下的问题,项目拟采用Python语言开发,结合Pandas等数据处理库,构建包含用户端和管理端的功能模块。系统将实现日志上传、故障查询、结果展示等核心功能,并通过可视化界面提升用户体验。设计涉及Flask框架、MySQL数据库及前端技术栈,符合复杂工程问题的特征要求。该工具旨在提高系统故障排查效率,具有实际应用价值。
2025-12-23 09:06:41
319
原创 基于日志分析的计算机系统故障排查工具的设计与实现选题
本文介绍了计算机科学技术学院2024届网络工程专业毕业设计选题《基于日志分析的计算机系统故障排查工具的设计与实现》。该课题由吴佳楠教授指导,属于设计类项目,旨在解决复杂计算机系统中故障定位困难的问题。系统采用Python开发,包含用户端和管理端两大模块,涉及Flask框架、MySQL数据库及前端技术栈。设计具备"复杂工程问题"特征,需综合运用数据处理、可视化等技术,预期开发出界面友好、操作便捷的故障排查工具。
2025-12-23 09:06:08
315
原创 基于日志分析的计算机系统故障排查工具的设计与实现任务书开题报告
摘要:本毕业设计旨在开发一个基于日志分析的计算机系统故障排查工具,采用Flask框架构建后端服务,结合MySQL/SQLite数据库存储,前端使用Bootstrap4框架和ECharts.js实现数据可视化。系统包含日志数据管理、可视化分析、智能搜索及管理员后台等功能模块,通过Pandas进行数据预处理,并集成用户认证机制。设计要求每日处理10万条日志数据,响应时间在2秒内,数据错误率低于1%。研究旨在提升系统故障排查效率,推动日志分析技术的智能化发展。项目周期16周,最终将提交1.5万字以上的论文及相关软
2025-12-23 09:05:36
416
原创 基于人脸识别技术的宿舍管理系统设计与实现任务书
摘要:本课题旨在设计实现基于人脸识别技术的宿舍管理系统,通过自动化身份验证提升宿舍管理效率和安全性。系统包含人脸识别模块、学生信息管理和进出记录功能,要求开发8张以上数据库表、30个以上字段及10个以上系统页面。学生需掌握Python、Django/Vue等技术,完成需求分析、系统开发与测试,提交45页以上报告。课题具有实用价值,符合信息技术发展趋势。参考文献包含15篇中外文献,涵盖人脸识别、数据库管理等技术领域。
2025-12-23 09:05:03
134
原创 基于人脸识别技术的宿舍管理系统设计与实现可行性报告
摘要:本项目旨在设计并实现一个基于人脸识别技术的宿舍管理系统,以提高宿舍管理的效率和安全性。系统将集成人脸识别门禁、学生信息管理、宿舍分配、维修事务处理等功能模块。通过文献研究发现,国内外在相关领域已有一定研究成果,但仍存在技术优化空间。项目采用Django+Vue3技术栈,结合MySQL数据库,实现前后端分离架构。研究重点包括人脸识别算法的准确性提升、系统功能的完善性以及用户体验优化。项目预计将为高校宿舍管理提供智能化解决方案,推动人工智能在教育管理领域的应用发展。(149字)
2025-12-23 09:04:33
456
原创 基于人脸识别的志愿活动时长管理系统设计与实现任务书
本文设计了一个基于人脸识别的志愿活动时长管理系统,采用SpringBoot和Vue技术实现。系统包含用户注册登录、志愿活动管理、人脸识别签到签退、时长统计等功能模块,旨在解决传统手工记录效率低、易出错的问题。通过自动化人脸识别技术实现快速身份验证,提高管理效率,确保服务时长记录的准确性。系统支持志愿者活动查询报名、时长统计,管理员可进行活动发布审核、数据备份等操作。预期实现志愿服务自动化管理,提升用户体验,促进志愿服务事业发展。
2025-12-23 09:04:00
162
原创 基于人脸识别的考勤系统设计与实现开题报告
本文设计并实现了一个基于人脸识别的志愿活动考勤管理系统。系统采用SpringBoot和Vue框架开发,包含用户管理、活动管理、签到签退和时长统计等模块。通过深度学习算法实现高精度人脸识别,确保志愿者身份的准确验证。系统支持志愿者注册登录、活动报名、人脸签到签退、时长查询等功能,管理员可进行活动发布、数据审核和系统维护。该系统实现了考勤自动化管理,提高了志愿服务的效率和准确性,为志愿服务发展提供了可靠的技术支持。
2025-12-23 09:03:28
270
原创 基于人脸识别的考勤系统设计与实现开题报告
摘要:本开题报告针对传统考勤系统存在的代打卡、效率低等问题,提出基于人脸识别技术的智能化考勤系统设计方案。研究采用文献调查、比较研究和经验总结等方法,重点解决系统实时性、数据安全和用户体验等关键问题。通过优化算法性能、加强数据加密和改进界面设计,实现高效准确的自动化考勤管理。研究计划分系统设计、开发实现和论文撰写三个阶段,历时6个月完成。该系统可广泛应用于企事业单位,具有提升管理效率、保障数据真实性的重要意义,同时推动人脸识别技术的实践应用。
2025-12-23 09:02:55
662
原创 基于人工智能的动物识别系统设计开题报告
本文提出了一种基于人工智能的动物识别系统设计方案。针对传统动物识别方法效率低、识别范围有限等问题,系统采用Django框架构建后端,Vue.js开发前端,实现前后端分离架构。主要功能包括实时摄像头检测、图片/视频识别、多种YOLO模型选择等动物识别模块,以及用户管理、模型管理等管理员模块。系统通过深度学习技术提高识别准确率,并提供结果导出等特色功能。硬件要求为CPU≥3.2GHz、内存≥16GB,软件环境包括Windows10、MySQL等。该方案具有可行性,能为生态保护提供高效准确的动物识别支持。
2025-12-23 09:02:19
330
原创 基于人工神经网络的新闻文本分类算法开题报告
本文探讨了基于人工神经网络的新闻文本分类算法研究。随着互联网信息爆炸式增长,传统人工分类方法已无法满足海量新闻处理需求。研究采用深度学习技术,结合Django框架搭建分类系统,实现新闻文本的自动分类与管理。系统包含数据采集、预处理、特征提取、模型训练等模块,使用SVM和神经网络模型进行对比实验,并通过ECharts.js实现数据可视化。该研究不仅能提高新闻分类效率,还推动了自然语言处理技术的发展,为新闻推荐、舆情监测等应用提供技术支持,具有重要的理论和实践价值。
2025-12-23 09:00:21
575
原创 基于情感分析和主题提取的新能源汽车用户评论分析系统的设计与实现任务书开题报告
本文介绍了山东理工大学毕业设计(论文)手册的完整框架,重点阐述了一个基于情感分析和主题提取的新能源汽车用户评论分析系统的设计。该系统采用SVM算法进行情感分析(准确率≥90%)和LDA主题模型提取关键话题,包含数据爬取、清洗、可视化等完整流程,采用Flask框架和MySQL/SQLite数据库实现。设计周期为2024年11月至2025年5月,分选题、开发、测试、论文撰写和答辩等阶段。系统旨在帮助企业分析用户反馈,优化产品服务,提升市场竞争力,推动新能源汽车行业智能化发展。手册还包含开题报告、中期检查、评审答
2025-12-23 08:59:48
616
原创 基于轻量级卷积神经网络的多器官医学图像分割系统设计与实现文献综述封面及要求
本文综述了基于轻量级卷积神经网络的多器官医学图像分割技术研究进展。随着深度学习发展,Mobile-UNet等轻量化网络通过深度可分离卷积等技术,在保持精度的同时显著降低了计算复杂度。国内外研究显示,该技术在肺部CT、腹部器官等分割任务中取得显著成效,但仍面临复杂结构分割、三维影像处理等挑战。未来发展趋势包括算法优化、多模态融合和临床应用推广。基于C/S架构的分割系统结合PYQT5前端和Python后端,为临床诊断提供了高效辅助工具。
2025-12-23 08:59:16
273
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅