RSA公钥密码问题求解:已知密文m=19,p=7,q=17,e=5,求c

1.n=pq=7*17=119

2.\varphi(n)=(p-1)*(q-1)=6*16=96

3.c=m^{e} mod n

19^{5} mod 119=m

5=2^{0}+2^{2} 所以上述式子还等于19的2^{0}+2^{2}次方 mod 119

19 mod 119=19

19^{2} mod 119 =4 这里是二次方还好算要是更高次方就不好算了

19^{4} mod 119=(19^{2} mod 119)平方 mod 119

因为:mod 是取余,要是直接19的四次方除以119,会得到一个分数,这个分数可以写成一个整数一个分数,例如:3/2为1又1/2(带分数),这个分数的分子部分就是余数,具体推导过程看下图:

这样算出来19 mod 119与19^{4} mod 119之后我们计算的c不是这两个数相乘,但我们可以使用同样的思路将这个式子表示出来:

欢迎大家交流指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值