第十五届蓝桥杯javaA组 砍柴 (两种写法)详解

参考资料

原题链接砍柴 - 蓝桥云课 (lanqiao.cn)
区间质数搜索——埃拉托斯特尼筛法和欧拉筛法-CSDN博客


思路

质数筛 + 二分 + 博弈 + 状态机(只因bushi)
状态转移方程  d p [ i ]   =   ! d p [ i − p ] 状态转移方程 dp[i] = !dp[i-p] 状态转移方程 dp[i] = !dp[ip]
由原始题意可以看出
砍树长度限制为小于其长度的质数——暗示你使用质数筛
交替砍柴——状态机
最优策略——寻找小于当前长度的使自己必胜的质数 p——二分搜索加快速度

状态机定义 dp[i] 表示长度为 i 时先手的胜负态

代码 1 ——优化埃氏筛

import java.util.*;
public class Main {
    static int t;
    static int []wood;
    static List<Integer> primes;
    // 求2~n的所有质数  优化埃氏筛法
    static void Sieve(int n){
        primes = new ArrayList<>();
        boolean []st = new boolean[n+1];
        //添加2~根号n的所有质数,并标记<=n的所有合数
        for(int i = 2;i*i<n;i++){
            if(!st[i]){
                primes.add(i);
                for(int j = i*i;j<=n;j+=i){//根据当前质因子筛去其倍数
                    st[j] = true;
                }
            }
        }
        //添加根号n到n的所有质数
        for(int i = (int)Math.sqrt(n)+1;i<=n;i++){
                if(!st[i]){
                    primes.add(i);
                }
            }
    }
    // 求小于n的最大质数
    static int maxPrimeLt(int n){
        int l = 0,r = primes.size()-1;
        while(l<r){
            int mid = l + r + 1>>1;
            if(primes.get(mid)>n){
                r = mid - 1;
            }
            else{
                l = mid;
            }
        }
        return l;
    }
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        t = sc.nextInt();
        wood = new int[t];
        int maxLen = 0;
        //接收t根木头并求得最大长度
        for (int i = 0; i < t; i++) {
            int val = sc.nextInt();
            maxLen = Math.max(maxLen, val);
            wood[i] = val;
        }
        // 求2~maxLen的所有质数
        Sieve(maxLen);
        //状态数组
        boolean []dp = new boolean[maxLen+1];
        //状态转移方程 dp[i] = !dp[i-p]  p为小于i的最大质数  存在即可说明状态转移成功
        for(int i = 2;i<=maxLen;i++){//枚举所有可能砍去的长度
            for(int j = maxPrimeLt(i);j>=0;j--){//枚举状态转移的长度,即下一步的状态
                if(!dp[i-primes.get(j)]){
                    dp [i] = true;
                    break; //存在即可说明状态转移成功
                }
            }
        }
        StringBuilder res = new StringBuilder();
        for(int i = 0;i<t;i++){
            if(dp[wood[i]])
                res.append("1\n");
            else
                res.append("0\n");
        }
        System.out.println(res);
        sc.close();
    }
}

代码 2——欧拉筛

import java.util.*;
public class Main {
    static int t;
    static int []wood;
    static List<Integer> primes;
    // 求2~n的所有质数  优化埃氏筛法
    static void Sieve(int n){
        primes = new ArrayList<>();
        boolean []st = new boolean[n+1];
        for(int i = 2;i<=n;i++){
            if(!st[i]){
                primes.add(i);
            }
            for(Integer p:primes){
                if(i*p>n)
                    break;
                st[i*p] = true;
                if(i%p==0){
                    break;
                }
            }
        }
    }
    // 求小于n的最大质数
    static int maxPrimeLt(int n){
        int l = 0,r = primes.size()-1;
        while(l<r){
            int mid = l + r + 1>>1;
            if(primes.get(mid)>n){
                r = mid - 1;
            }
            else{
                l = mid;
            }
        }
        return l;
    }
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        t = sc.nextInt();
        wood = new int[t];
        int maxLen = 0;
        //接收t根木头并求得最大长度
        for (int i = 0; i < t; i++) {
            int val = sc.nextInt();
            maxLen = Math.max(maxLen, val);
            wood[i] = val;
        }
        // 求2~maxLen的所有质数
        Sieve(maxLen);
        //状态数组
        boolean []dp = new boolean[maxLen+1];
        //状态转移方程 dp[i] = !dp[i-p]  p为小于i的最大质数  存在即可说明状态转移成功
        for(int i = 2;i<=maxLen;i++){//枚举所有可能砍去的长度
            for(int j = maxPrimeLt(i);j>=0;j--){//枚举状态转移的长度,即下一步的状态
                if(!dp[i-primes.get(j)]){
                    dp [i] = true;
                    break; //存在即可说明状态转移成功
                }
            }
        }
        StringBuilder res = new StringBuilder();
        for(int i = 0;i<t;i++){
            if(dp[wood[i]])
                res.append("1\n");
            else
                res.append("0\n");
        }
        System.out.println(res);
        sc.close();
    }
}
2022年蓝桥杯Java A是中国著名的计算机竞赛之一,该比赛旨在发掘和培养优秀的Java程序设计人才。参赛者需要具备一定的Java编程基础和算法思维能力,通过解决一系列实际问题来展示自己的技术水平。 蓝桥杯Java A比赛内容将涉及Java语言基础知识、面向对象编程、数据结构与算法、数据库等方面。参赛选手需要通过模拟真实的工作场景,设计和实现各种功能模块,展现出自己解决问题的能力和代码的优雅性。 蓝桥杯Java A比赛对于参赛者来说是一次难得的锻炼机会。通过参加比赛,可以学习到实际项目中常用的技术和解决问题的思路,提高自己的编程能力。同时,这也是一个展示自己才华和与其他选手竞争的舞台,可以通过与其他优秀选手的交流互动,拓宽自己的视野,并且与同龄人一起追求计算机编程的进步。 参加蓝桥杯Java A比赛,不仅可以提升自己的技术能力,还能为自己的未来发展增加一份宝贵的竞赛经验。很多优秀的程序员和企业都非常看重蓝桥杯的参赛者,因为这代表着他们在编程领域具备一定的实力和潜力。 总而言之,参加2022年蓝桥杯Java A是一个对自己实力的检验和提高的机会,同时也是一个与其他优秀选手竞争的平台,可以通过比赛锻炼自己的技术能力和解决问题的能力。参赛者在比赛中要保持冷静和耐心,学会与其他选手交流和合作,相信通过努力,一定能够在比赛中取得好的成绩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值