智慧社区2.0

项目亮点

1. 技术架构层面

✅ 多数据源整合(MySQL + Redis + HDFS + OSS)

  • 核心亮点:不仅仅是单一数据库,而是根据数据特性使用MySQL(结构化数据)+ Redis(缓存)+ HDFS(大数据存储)+ OSS(对象存储),提高了系统的数据存储效率查询速度
  • 面试时可以强调
    • Redis 作为缓存,加速社区热点数据访问,减少 MySQL 压力。
    • HDFS 存储海量日志和 AI 任务数据,支持后续分析。
    • OSS 解决图片、视频存储,确保社区管理数据安全可访问。

✅ AI 任务控制台(Flink + WebSocket 实时数据流)

  • 核心亮点:采用Flink + WebSocket 实现 AI 任务的实时监控,提升了 AI 算法处理的透明度。
  • 面试时可以强调
    • WebSocket 实时通信:让前端可以实时查看 AI 任务的运行状态,而不是轮询数据库,减少服务器压力。
    • Flink 实时流计算:处理社区环境的传感器数据流,比如垃圾桶满溢、噪声污染、空气质量等。

✅ 分布式文件存储(HDFS & OSS)

  • 核心亮点:不同类型的文件选择不同的存储方式,提高系统灵活性:
    • 监控视频、AI 识别结果 -> HDFS
    • 业务图片、政策文件、用户上传 -> OSS
  • 面试时可以强调
    • 使用 Java + HDFS API 进行文件上传下载,实现大文件高效存储
    • OSS 适配社区管理文件需求,支持权限管理和 Web 访问。

2. 业务层面

✅ 细粒度的用户权限管理(RBAC + 数据级权限控制)

  • 核心亮点:不仅仅是简单的角色权限,而是根据成都市 -> 社区 -> 网格 -> 点位 逐级细化权限,不同用户只能访问自己管辖范围的数据。
  • 面试时可以强调
    • 基于角色(RBAC)+ 组织架构(数据权限)+ Redis 缓存,提升权限校验效率。
    • AOP + Redis 实现高效权限控制,减少数据库查询,提高接口响应速度。

✅ 机器人后端模块(gRPC-Web 交互)

  • 核心亮点:机器人实时交互,支持社区 AI 任务自动化,比如巡逻、目标识别等。
  • 面试时可以强调
    • 采用 gRPC-Web 进行高效通信,比传统 HTTP 更轻量级,减少网络开销。
    • 机器人任务调度优化,确保任务执行合理性,如 自动识别社区安全隐患(垃圾堆积、违停等)

3. 性能优化

✅ Redis 结合 AOP 进行缓存控制

  • 核心亮点:用 AOP 实现缓存拦截,减少数据库查询,提高查询速度。
  • 面试时可以强调
    • 数据库热点数据查询缓存:如社区环境数据、用户权限信息存入 Redis,减少 MySQL 压力。
    • 分布式锁控制高并发请求,防止数据不一致。

✅ WebSocket 保障长连接稳定性

  • 核心亮点:采用心跳检测 + 自动重连,保证前端 WebSocket 不断线
  • 面试时可以强调
    • 服务端定时发送心跳包,前端检测超时后自动重连,确保 AI 任务状态实时更新。
    • 负载均衡 & 多实例支持,提升并发能力,防止 WebSocket 连接过载。

项目难点

1. 多数据源整合 & 数据一致性

难点

  • 系统需要处理 MySQL(结构化数据)、Redis(缓存)、HDFS(大数据)、OSS(对象存储),不同的数据源访问方式和一致性要求不同
  • MySQL 和 Redis 之间数据一致性问题,如权限变更后,Redis 仍然缓存旧数据,导致访问异常。

解决方案

  • 数据库+缓存双写一致性策略

    • 方式 1:缓存失效策略(推荐):更新MySQL 后,删除 Redis 缓存,让下次请求时自动更新。
    • 方式 2:延迟双删:数据库更新后,短时间内异步更新 Redis,降低一致性风险。
  • HDFS & OSS 结合使用

    • 大量日志和 AI 识别数据存 HDFS,需要批量分析时再加载,提高查询效率。
    • OSS 适合存储用户上传的文件,提供更灵活的 Web 访问权限。

2. WebSocket 实时通信稳定性(前端复制)

难点

  • 长连接不稳定:前端 WebSocket 连接可能会因 网络波动、服务器重启、超时等原因断开,影响实时数据展示。
  • 高并发场景下连接数过多,可能会导致服务器负载过高。

解决方案

  • 心跳检测机制:前端定期发送 PING 包,服务端收到后返回 PONG,确保连接有效。
  • 自动重连机制:前端在 WebSocket 断开时自动尝试重新连接,防止数据中断。
  • 负载均衡
    • 采用 Nginx + WebSocket 反向代理,实现多实例分流,避免单点故障。
    • 配合 Redis 共享 WebSocket 连接信息,确保不同服务器实例都能识别同一用户的会话状态。

3. 细粒度的用户权限管理

难点

  • RBAC 角色管理较复杂:网格员、志愿者、居民等不同角色需要访问不同的数据,权限控制较为复杂。
  • 数据级别权限:如某个网格员只能访问自己辖区的数据,如何做到 SQL 层级权限控制?
  • 权限变更的实时生效:用户权限修改后,如何确保 Redis 和 MySQL 里的权限数据同步?

解决方案

  • 基于 RBAC + 组织架构的权限系统

    • 角色权限表(role_permission)控制大范围权限,如“网格员可查看某网格内数据”。
    • 数据权限表(user_grid_mapping)存储具体可访问的网格、楼栋等数据范围。
  • AOP + Redis 缓存权限

    • 查询权限时先查 Redis 缓存,没有命中时再查询 MySQL,减少数据库查询压力。
    • 权限变更后自动清理 Redis 缓存,确保下次查询获取最新权限。

4. AI 任务控制台 & 实时数据流

难点

  • AI 任务的监控数据量大,如环境监测、机器人巡逻、目标识别等,需要高效的数据传输和展示
  • 实时数据更新压力大,Flink 处理的数据流需要快速传输到前端。

解决方案

  • Flink + Kafka 进行流式数据处理

    • AI 任务状态、监控数据等实时传输到 Kafka,然后由 Flink 进行数据流分析
    • 最终通过 WebSocket 传输到前端,减少数据库查询压力。
  • 前端数据展示优化

    • ECharts 结合 WebSocket,前端只增量更新数据,减少页面重绘开销,提高用户体验。

5. 分布式文件存储 & 高并发文件访问

难点

  • 大量视频、图片存储在 HDFS / OSS 中,访问时延较大,如果前端直接访问 HDFS,可能会影响系统性能。
  • 文件上传和下载的并发处理,如大量用户同时上传/下载文件,可能会导致存储服务器负载过高

解决方案

  • HDFS + OSS 分层存储

    • 近期热点数据存 OSS,支持CDN 加速,提升访问速度。
    • 历史数据归档到 HDFS,节省存储成本。
  • 文件访问优化

    • 前端访问 OSS 直接获取图片 URL,而不是通过后端中转,减少服务器压力。
    • 批量文件处理时,使用 多线程+异步 IO 提高上传/下载效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值