Yang等的多秘密共享方案

文章介绍了(t,n)门限方案,用于分发和重构秘密,当k≤t时,使用t-1次多项式;当k>t时,用k-1次多项式。关键在于利用拉格朗日插值公式进行秘密重构,但方案不抵抗主动攻击。参考了Yang等人2004年的研究。
摘要由CSDN通过智能技术生成

参数选择

假设有k个秘密c_{1},c_{2},...,c_{k},有 n 个成员P_{1},P_{2},...,P_{n}f(r,s)是一个单向函数,r 为常数。分发者任意选择n个秘密份额 s_{1},s_{2},...,s_{n},通过秘密通道分发给n个成员。设该方案为 (t,n) 门限方案。

一、当 k <= t:

份额分发

1.选择大素数q,然后选择 t - 1 次多项式h(x)\:mod\:q

h(x)=\sum_{i=0}^{k-1}c_{i}x^{i}+\sum_{i=k}^{t-1}a_{i-k}x^{i}\:mod\:q

2.计算

y_{i}=h(f(r,s_{i}))\: mod\:q

其中,i=1,...,n

3.公开(r,y_{1},y_{2},...,y_{n})

秘密重构

至少 t 个成员拿出伪份额f(r,s_{i}),由已知 t 对参数:(f(r,s_{i})y_{i}),利用拉格朗日插值公式重构多项式h(x)\:mod\:q

h(x)=\sum_{i=1}^{t}y_{i}\prod_{j=1,j\neq i}^{t}\frac{x-f(r,s_{j})}{f(r,s_{i})-f(r,s_{j})}\:mod\:q \\=\sum_{i=0}^{k-1}c_{i}x^{i}+\sum_{i=k}^{t-1}a_{i-k}x^{i}\:mod\:q

至此,秘密已经全部恢复,包含在多项式表达式中。

事实上,t 对参数:(f(r,s_{i})y_{i}),分别为拉格朗日插值公式中的(x_{i},f(x_{i})),简单代入即可。

二、当 k>t :

份额分发

1.选择大素数q,然后选择 k - 1 次多项式h(x)\:mod\:q

h(x)=\sum_{i=0}^{k-1}c_{i}x^{i}\:mod\:q

2.计算

y_{i}=h(f(r,s_{i}))\: mod\:q

其中,i=1,...,n

3.计算

h(i)\:mod\:q

其中,i=1,...,k-t

4.公开(r,h(1),h(2),...,h(k-t),y_{1},y_{2},...,y_{n})

秘密重构

至少 t 个成员拿出伪份额f(r,s_{i}),由已知 t 对参数:(f(r,s_{i})y_{i}),和公开的 k - t 对参数:(i,h(i)) 利用拉格朗日插值公式重构多项式h(x)\:mod\:q

h(x)=\sum_{i=1}^{t}y_{i}\prod_{j=1,j\neq i}^{t}\frac{x-f(r,s_{j})}{f(r,s_{i})-f(r,s_{j})}+ \sum_{i=1}^{k-t}h(i)\prod_{j=1,j\neq i}^{k-t}\frac{x-j}{i-j}\:mod\:q \\ =\sum_{i=0}^{k-1}c_{i}x^{i}\:mod\:q

至此,秘密已经全部恢复,包含在多项式表达式中。

事实上,t 对参数:(f(r,s_{i})y_{i}),加上 k - t 对参数(i,h(i)),分别为拉格朗日插值公式中的(x_{i},f(x_{i})),简单代入即可。

问题

不能抵御主动攻击。

参考文献:

[1]Yang, CC (Yang, CC);Chang, TY (Chang, TY);Hwang, MS (Hwang, MS).A (t,n) multi-secret sharing scheme[J].Applied Mathematics and Computation,2004,Vol.151(2): 483-490
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值