求四阶行列式的值

include <stdio.h>
692e92fa080a43abb9e8dbbd1c2bc94a.jpgint main()
{
    int a[4][4] = { {1,2,3,4},{2,3,4,1},{3,4,1,2},{4,1,2,3 }//定义一个而为数组,并将其初始化
};
    int i, j;double m,A;
    //将矩阵化为上三角型后,计算对角元素相乘值,即为行列式的值
    for (i = 1; i < 4; i++) 
    {
        m = a[i][0] / a[0][0];
        for (j = 0; j < 4; j++) { a[i][j] = a[i][j] - a[0][j]*m; }
    }
    for (i = 2; i < 4; i++) 
    { m = a[i][1] / a[1][1];
    for (j = 1; j < 4; j++) { a[i][j] = a[i][j] - a[1][j] * m; }
    }
    for (i = 3; i < 4; i++)
    {
        m = a[i][2] / a[2][2];
        for (j = 2; j < 4; j++) { a[i][j] = a[i][j] - a[2][j] * m; }
    }
    A = a[0][0] * a[1][1] * a[2][2] * a[3][3]; printf("对角线元素为%d,%d,%d,%d\n", a[0][0], a[1][1], a[2][2], a[3][3]);
    printf("行列式的值为%f\n", A);
    system("pause");
    return 0;
}

 

在C语言中计算一个四阶行列式通常需要手动展开行或列来解,因为没有内置的函数可以直接提供这个功能。这里提供一种常见的克莱姆法则(Cramer's Rule)方法的简单实现步骤: 1. 初始化一个4x4的矩阵 `matrix[4][4]` 作为输入数据。 ```c int matrix[4][4] = { {a11, a12, a13, a14}, {a21, a22, a23, a24}, {a31, a32, a33, a34}, {a41, a42, a43, a44} }; ``` 2. 创建一个变量 `determinant` 来存储最终的行列式,初始化为0。 ```c int determinant = 0; ``` 3. 对于四个元素 (i, j),从1到4,按照交替正负乘法的原则展开行列式: - 如果 i 和 j 的奇偶性相同(都是奇数或都是偶数),则乘以相应的元素并加上到 `determinant` 中。 - 如果 i 和 j 的奇偶性不同,则乘以相应的元素并减去到 `determinant` 中。 简单表示就是: ```c for (int i = 0; i < 4; i++) { determinant += ((i % 2 == 0) ? 1 : -1) * matrix[i][0] * cofactor(matrix, i, 0); } ``` 4. 函数 `cofactor(matrix, i, j)` 计算给定位置 (i, j) 的元素对应的余子矩阵的行列式。这通常也需要递归地计算其他较小的行列式: ```c int cofactor(matrix, int row, int col) { // 对余子矩阵的行列式,省略细节... return subDeterminant(matrix, row, col); } // ...然后定义一个辅助函数 subDeterminant() 来递归地计算子矩阵的行列式 ``` 5. 返回 `determinant`。 注意:由于涉及到递归和复杂的数学运算,手动实现可能会有些繁琐,特别是当矩阵尺寸更大时。实际应用中,可以考虑使用数库或者第三方库如GMP(GNU Multiple Precision Arithmetic Library)来进行更高效的计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值