一、基础必备技能
1. Python编程
- 核心语法:熟练掌握函数、面向对象、异常处理、文件操作等。
- 数据处理库:
Pandas
(数据清洗、分析)、NumPy
(数值计算)、Matplotlib/Seaborn
(数据可视化)。 - 性能优化:多线程/多进程、
Cython
加速、内存管理。 - 实战场景:能独立完成数据清洗、特征工程、可视化分析。
2. SQL与数据库
- SQL语法:复杂查询(JOIN、子查询、窗口函数)、索引优化、事务处理。
- 数据库类型:
- 关系型:MySQL、PostgreSQL。
- 大数据存储:Hive、HBase、ClickHouse。
- 实战要求:能从千万级数据中高效提取和分析数据。
二、大数据技术栈
1. Hadoop生态
- 核心组件:
- HDFS:分布式文件系统(读写原理、容错机制)。
-