算法 | 归并排序、求逆序对

目录

排序数组(归并排序)

题解:

交易逆序对的总数

题解:

计算右侧小于当前元素的个数

题解:

翻转对

题解: 


排序数组(归并排序)

912. 排序数组 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/sort-an-array/description/

题解:

归并排序就是把数组不断分组,分到不能再分的时候,开始两两一组进行排序。可以根据实际,选择排序后数组为升序或降序。

mid = left + (right - left) /2 可以防止 mid 溢出。 

在辅助数组排完序后,要把数字填回原来的数组。 

class Solution {
public:
    vector<int> tmp;
    vector<int> sortArray(vector<int>& nums) {
        tmp.resize(nums.size());
        mergeSort(nums,0,nums.size()-1);//左闭右闭
        return nums;
    }
    void mergeSort(vector<int>& nums,int left,int right)
    {
        if(left>=right) return;
        int mid=left+(right-left)/2;
        mergeSort(nums,left,mid);   mergeSort(nums,mid+1,right);
        int cur1=left,cur2=mid+1,i=0;
        while(cur1<=mid && cur2<=right)
            tmp[i++]=(nums[cur1]>nums[cur2]?nums[cur2++]:nums[cur1++]);
        while(cur1<=mid)    tmp[i++]=nums[cur1++];
        while(cur2<=right)  tmp[i++]=nums[cur2++];

        for(int j=left,i=0;j<=right;j++) nums[j]=tmp[i++];   
    }

};

交易逆序对的总数

LCR 170. 交易逆序对的总数 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/shu-zu-zhong-de-ni-xu-dui-lcof/description/

题解:

合并阶段本质上是合并两个排序数组的过程,而每当遇到 左子数组当前元素 > 右子数组当前元素 时,意味着 左子数组当前元素 至 末尾元素 与 右子数组当前元素 构成了若干 逆序对

比如下图,cur1 < cur2 显然成立,且左右子数组皆为升序,

  • 当 record[ cur1 ] > record[ cur2 ] 时,record[ cur1 ] 和 record[ cur2 ] 构成逆序对,又 cur1 右边的数大于等于 record[ cur1 ] ,所以 cur1 右边的数 和 record[ cur2 ] 也构成逆序对!逆序对的总数加上 mid - cur1 +1.
  • 当 record[ cur1 ] <=  record[ cur2 ] 时,说明当前访问的数不构成逆序对,cur1++,往后遍历。


在判断完逆序对之后,要进行升序排序,便于下一层遍历时找逆序对。

class Solution {
public:
    vector<int> tmp;
    int reversePairs(vector<int>& record) {
        tmp.resize(record.size());
        return mergeSort(record,0,record.size()-1);//左闭右闭
    }
    int mergeSort(vector<int>& record,int left,int right)
    {
        if(left>=right) return 0;
        int ret=0,mid=left+(right-left)/2;
        ret+=mergeSort(record,left,mid);
        ret+=mergeSort(record,mid+1,right);

        //边合并边计数,排升序
        int cur1=left,cur2=mid+1,i=0;
        while(cur1<=mid && cur2<=right)
        {
            if(record[cur1]<=record[cur2])   
                tmp[i++]=record[cur1++];
            else
            {
                ret+=(mid-cur1+1);  tmp[i++]=record[cur2++];
            }
        }
        while(cur1<=mid)   tmp[i++]=record[cur1++];
        while(cur2<=right)  tmp[i++]=record[cur2++];

        for(int j=left,i=0;j<=right;j++)    record[j]=tmp[i++];
        return ret;
    }
};

计算右侧小于当前元素的个数

315. 计算右侧小于当前元素的个数 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/count-of-smaller-numbers-after-self/description/

题解:

由于归并排序后有些数字已经不再原来的位置了,这不便于我们把统计出来的逆序对放到对应的位置,所以需要设置一个下标数组,记录数组元素的初始下标。若数组中存在重复的数字,但是下标不同,哈希表无法处理这种映射关系,用数组解决即可。

 如下图,在归并排序的基础上,更新数字下标的位置。

class Solution {
public:
    vector<int> ret;
    vector<int> tmpIndex;//临时数组的下标
    vector<int> index;//原数组元素的下标
    vector<int> tmpNums;//临时数组
    vector<int> countSmaller(vector<int>& nums) {
        int n=nums.size();
        tmpIndex.resize(n);   tmpNums.resize(n);
        index.resize(n);  ret.resize(n);
        for(int i=0;i<n;i++)  index[i]=i;//初始化

        mergeSort(nums,0,n-1);//左闭右闭
        return ret;
    }
    void mergeSort(vector<int>& nums,int left,int right)
    {
        if(left>=right) return;
        int mid=left+(right-left)/2;
        mergeSort(nums,left,mid);   mergeSort(nums,mid+1,right);
        int cur1=left,cur2=mid+1,i=0;
        while(cur1<=mid && cur2<=right)//排降序
        {
            if(nums[cur1]<=nums[cur2])//右侧比当前大,只排序
            {
                tmpNums[i]=nums[cur2];
                tmpIndex[i++]=index[cur2++];
            }
            else//右侧比当前大,计数且排序
            {
                ret[index[cur1]]+=(right-cur2+1);
                tmpNums[i]=nums[cur1];
                tmpIndex[i++]=index[cur1++];
            }
        }
        while(cur1<=mid)   
        {
            tmpNums[i]=nums[cur1];
            tmpIndex[i++]=index[cur1++];
        }
        while(cur2<=right)
        {
            tmpNums[i]=nums[cur2];
            tmpIndex[i++]=index[cur2++];
        }
        //填回原数组
        for(int j=left,i=0;j<=right;j++)    
        {
            nums[j]=tmpNums[i];   index[j]=tmpIndex[i++];
        }
    }
};

翻转对

493. 翻转对 - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/reverse-pairs/description/

题解: 

求逆序对的判断条件和归并排序一样,所以把它们写在同一个 while 循环中,但是翻转对的判断条件和归并排序的判断不同,我们需要在归并排序前计算翻转对的个数

2*nums[cur2]>=nums[cur1] 写成 nums[cur2]>=nums[cur1]/2.0 是为了防止溢出!

class Solution {
public:
    vector<int> tmp;
    int reversePairs(vector<int>& nums) {
        int n=nums.size();  tmp.resize(n);
        return mergeSort(nums,0,n-1);//左闭右闭
    }
    int mergeSort(vector<int>& nums,int left,int right)
    {
        if(left>=right) return 0;
        int ret=0,mid=left+(right-left)/2;
        ret+=mergeSort(nums,left,mid);
        ret+=mergeSort(nums,mid+1,right);
        int cur1=left,cur2=mid+1,i=0;
        //找翻转对
        while(cur1<=mid)
        {
            while(cur2<=right && nums[cur2]>=nums[cur1]/2.0)    cur2++;
            if(cur2>right)  break;//没有必要遍历了
            ret+=(right-cur2+1);    cur1++;
        }
        //合并,排降序
        cur1=left,cur2=mid+1,i=0;
        while(cur1<=mid && cur2<=right)
            tmp[i++]=(nums[cur1]>nums[cur2]?nums[cur1++]:nums[cur2++]);
        while(cur1<=mid)    tmp[i++]=nums[cur1++];
        while(cur2<=right)  tmp[i++]=nums[cur2++];
        for(int j=left,i=0;j<=right;j++,i++)    nums[j]=tmp[i];
        return ret;
    }
};

归并排序是一种经典的排序算法,它通过将待排序的序列递归地划分成较小的子序列,然后将这些子序列进行合并,最终得到一个有序的序列。在归并排序的过程中,可以通过统计逆序对的数量来评估序列的有序程度。 使用归并排序逆序对的基本思想是:在合并两个有序子序列的过程中,如果左子序列中的元素大于右子序列中的元素,则构成了一个逆序对。在合并过程中,统计逆序对的数量,并将两个子序列合并成一个有序序列。 具体步骤如下: 1. 将待排序序列不断二分,直到每个子序列只有一个元素。 2. 逐层合并相邻的子序列,并在合并过程中统计逆序对的数量。 3. 重复步骤2,直到所有子序列合并成一个有序序列。 以下是使用归并排序逆序对的示例代码: ```python def merge_sort(arr): if len(arr) <= 1: return arr, 0 mid = len(arr) // 2 left, count_left = merge_sort(arr[:mid]) right, count_right = merge_sort(arr[mid:]) merged, count_merge = merge(left, right) return merged, count_left + count_right + count_merge def merge(left, right): merged = [] count = 0 i, j = 0, 0 while i < len(left) and j < len(right): if left[i] <= right[j]: merged.append(left[i]) i += 1 else: merged.append(right[j]) j += 1 count += len(left) - i merged.extend(left[i:]) merged.extend(right[j:]) return merged, count ``` 使用上述代码,可以通过调用`merge_sort`函数来解给定序列的逆序对数量。函数返回排序后的序列以及逆序对的数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值