RSA2_tool工具的使用

首先打开工具的使用然后用具体的实例来进行演示,(这里我给出10进制的演示方法)

如果给出的全部是数字就选用16进制,如果给出的是含有数字和字母的就选用16进制。

给出p=3,q=5,点击Calc.D即可自动算出N和D的值,如果已知N的值,点击Generate即可拿到P和Q的值,再点击test即可进行加密解密操作。

M是输入的明文,C是加密后的结果,在输入名文的时候只能EN键能够点击,DE键不能够点击。(一般RSA都是用python脚本跑的,比如CTF当中的密码题)。

RSA-Tool 2 Copyright ?2000-2002 by tE! [TMG] Introduction Please read this text carefully. This utility has been made for those who want to use the RSA public key algorithm in their own programs. It offers creation of strong keypairs and a nice integer factorization feature which makes use of several differnt factoring methods including the MPQS. It's possible to factor integers +256 bits in size but please keep in mind that this can take a *lot* of memory and time ! Thus it's not recommended to try factoring bigger numbers on slow machines with a few MB of physical Memory. Don't even think of trying to factor 512 bit numbers for example.. RSA-Tool 2 Features: - Secure keypair generation - Key test dialog - Support of multiple number bases - Auto base-conversion on select - Support of numbers up to 4096 Bits 1. About RSA RSA is a Public Key Cryptosystem developed in 1977 by Ronald Rivest, Adi Shamir and Leonard Adleman. Since 09-20-2000 the U.S. Patent #4,405,829 on this Algorithm EXPIRED! That means that the Algorithm is Public Domain now and can be used by everyone for free, even in commercial software. 2. Parameters P = 1st large prime number Q = 2nd large prime number (sizes of P and Q should not differ too much!) E = Public Exponent (a random number which must fulfil: GCD(E, (P-1)*(Q-1))==1) N = Public Modulus, the product of P and Q: N=P*Q D = Private Exponent: D=E^(-1) mod ((P-1)*(Q-1)) Parameters N and E are public whereas D is -private- and must NEVER be published! P and Q are not longer needed after keygeneration and should be destroyed. To obtain D from the public key (N, E) one needs to try splitting N in its both prime factors P and Q. For a large Modulus N (512 bit and more) with carefully chosen primefactors P and Q this is a very difficult problem. All the security of the RSA encryption scheme relies on that integer factorization problem (tough there's no mathematical proof for it). To fin
### 下载并安装RSA工具 对于加密或安全目的而言,获取可靠的RSA工具至关重要。通常情况下,开源社区提供了多种用于实现RSA算法的库和工具。 #### 使用Python中的`cryptography`库 一个广泛使用的选项是在Python环境中利用 `cryptography` 库来处理基于RSA的操作。该库支持创建密钥对、签名以及验证等功能[^1]。 要安装此库,可以执行如下命令: ```bash pip install cryptography ``` 下面是一个简单的例子展示如何生成一对公私钥,并保存到文件中: ```python from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization private_key = rsa.generate_private_key( public_exponent=65537, key_size=2048, ) pem = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption() ) with open('private_key.pem', 'wb') as f: f.write(pem) public_key = private_key.public_key() pem_public = public_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo ) with open('public_key.pem', 'wb') as f: f.write(pem_public) ``` 这段代码展示了怎样通过编程方式生成RSA密钥对并将它们存储为PEM格式的文件。 此外,还有其他专门设计的安全软件和服务提供更高级别的功能和支持,比如GnuPG (GNU Privacy Guard),它不仅限于RSA操作还涵盖了广泛的加密需求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值