栈和队列总结:一个队列在模拟栈弹出元素的时候只要将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部,此时在去弹出元素就是栈的顺序了。
递归的实现是栈:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
239. 滑动窗口最大值
题目:
给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
思路:队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。
那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。
设计单调队列的时候,pop,和push操作要保持如下规则:
- pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
- push(value):如果push的元素value大于入口元素的数值,那么就将队列出口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。
from collections import deque
class MyQueue: #单调队列(从大到小
def __init__(self):
self.queue = deque() #这里需要使用deque实现单调队列,直接使用list会超时
#每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
#同时pop之前判断队列当前是否为空。
def pop(self, value):
if self.queue and value == self.queue[0]:
self.queue.popleft()#list.pop()时间复杂度为O(n),这里需要使用collections.deque()
#如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
#这样就保持了队列里的数值是单调从大到小的了。
def push(self, value):
while self.queue and value > self.queue[-1]:
self.queue.pop()
self.queue.append(value)
#查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
def front(self):
return self.queue[0]
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
que = MyQueue()
result = []
for i in range(k): #先将前k的元素放进队列
que.push(nums[i])
result.append(que.front()) #result 记录前k的元素的最大值
for i in range(k, len(nums)):
que.pop(nums[i - k]) #滑动窗口移除最前面元素
que.push(nums[i]) #滑动窗口前加入最后面的元素
result.append(que.front()) #记录对应的最大值
return result
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
res=[]
if not nums or k==0:
return res
deque=collections.deque()
for i in range(k):
while deque and deque[-1]<nums[i]:
deque.pop()
deque.append(nums[i])
res.append(deque[0])
for i in range(k,len(nums)):
if deque[0]==nums[i-k]:
deque.popleft()
while deque and deque[-1]<nums[i]:
deque.pop()
deque.append(nums[i])
res.append(deque[0])
return res
题目:给你一个整数数组 nums
和一个整数 k
,请你返回其中出现频率前 k
高的元素。你可以按 任意顺序 返回答案。
import heapq
from typing import List
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
# 使用字典记录每个元素的出现次数
frequency_map = {}
for num in nums:
frequency_map[num] = frequency_map.get(num, 0) + 1
# 使用最小堆来维护频率前k高的元素
min_heap = []
for num, frequency in frequency_map.items():
# 将元素和对应的频率添加到堆中
heapq.heappush(min_heap, (frequency, num))
# 如果堆的大小超过了k,就弹出堆顶元素
if len(min_heap) > k:
heapq.heappop(min_heap)
# 从堆中弹出所有元素,并将它们添加到一个结果列表中
result = [item[1] for item in min_heap]
# 由于题目要求可以按任意顺序返回答案,所以不需要对结果列表进行排序
# 如果需要按照频率从高到低的顺序返回结果,可以使用以下代码:
# result.reverse()
return result
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
hanshmap={}
for i in range(len(nums)):
hanshmap[nums[i]]=hanshmap.get(nums[i],0)+1
pri_que=[]
for key,freq in hanshmap.items():
heapq.heappush(pri_que,[freq,key])
if len(pri_que)>k:
heapq.heappop(pri_que)
res=[0]*k
for i in range(k-1,-1,-1):
res[i]=heapq.heappop(pri_que)[1]
return res
总结:能看懂但是写不出来,有点费劲