Floyed算法的原理和思想
Floyd算法,也称为Floyd-Warshall算法,是一种用于求解图中所有节点之间最短路径的动态规划算法。它采用三重循环来更新节点之间的最短路径,时间复杂度为O(n^3)。对很多题目而言,Floyed的速度会很慢。
Floyd算法的基本思想是利用动态规划的方式,逐步更新节点之间的最短路径长度。具体步骤如下:
- 初始化节点之间的距离矩阵,如果两个节点之间有直接连接,则距离为连接的权重,否则为无穷大。
- 通过三重循环遍历所有节点,更新节点之间的最短路径长度,即如果经过节点k可以缩短两个节点i和j之间的路径长度,则更新距离矩阵。
- 最终得到节点之间的最短路径长度矩阵。
Floyd的详解过程
Floyd的时间复杂度和适用条件
时间复杂度:O(n3)
适用范围:适用于无负权回路的稠密图, 运行一次即可求得任意两点间的最短路