Floyd讲解(一看就会版)

Floyd-Warshall算法通过动态规划求解图中所有节点间的最短路径,采用三重循环更新距离。适用于无负权回路的稠密图,时间复杂度为O(n^3)。给出了一个C++代码示例及应用场景——信息学奥赛题目的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Floyed算法的原理和思想

Floyd算法,也称为Floyd-Warshall算法,是一种用于求解图中所有节点之间最短路径的动态规划算法。它采用三重循环来更新节点之间的最短路径,时间复杂度为O(n^3)。对很多题目而言,Floyed的速度会很慢。

Floyd算法的基本思想是利用动态规划的方式,逐步更新节点之间的最短路径长度。具体步骤如下:

  1. 初始化节点之间的距离矩阵,如果两个节点之间有直接连接,则距离为连接的权重,否则为无穷大。
  2. 通过三重循环遍历所有节点,更新节点之间的最短路径长度,即如果经过节点k可以缩短两个节点i和j之间的路径长度,则更新距离矩阵。
  3. 最终得到节点之间的最短路径长度矩阵。 

Floyd的详解过程 

【求最短路径Floyd算法!】https://www.bilibili.com/video/BV14R4y1x7GB?vd_source=4b861fc9f463823ccf14e08ce49d7bf2​​​​​​​

Floyd的时间复杂度和适用条件

时间复杂度:O(n3)

适用范围:适用于无负权回路的稠密图, 运行一次即可求得任意两点间的最短路

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值