polylogarithm(level2)Chapter0

文章详细阐述了Polylogarithm的三个定理,涉及复杂数学中的积分表达式与特殊函数,如黎曼ζ函数和多项式对数函数的高阶计算。同时,讨论了权重与级别在多重ζ值中的作用,以及与之相关的级数展开和积分计算方法。
摘要由CSDN通过智能技术生成

# Polylogarithm tutorial(level 2)

display of integral

Theorom   1 \textbf{Theorom 1} Theorom 1
∫ 0 1 ln ⁡ ( 1 − x ) ln ⁡ 2 x ln ⁡ 2 ( 1 + x ) x d x = π 2 12 ln ⁡ 4 2 − π 4 12 ln ⁡ 2 2 + 2 π 2 L i 4 ( 1 2 ) + 7 π 2 4 ζ ( 3 ) ln ⁡ 2 2 − 163 π 6 10080 − 15 4 ζ 2 ( 3 ) \int_0^1\frac{\ln(1-x)\ln^2x\ln^2(1+x)}{x}\mathrm{d}x=\frac{\pi^2}{12}\ln^42-\frac{\pi^4}{12}\ln^22+2\pi^2\mathrm{Li}_4(\frac{1}{2})+\frac{7\pi^2}{4}\zeta(3)\ln^22-\frac{163\pi^6}{10080}-\frac{15}{4}\zeta^2(3) 01xln(1x)ln2xln2(1+x)dx=12π2ln4212π4ln22+2π2Li4(21)+47π2ζ(3)ln2210080163π6415ζ2(3)
Theorom   2 \textbf{Theorom 2} Theorom 2
∫ 0 1 ln ⁡ 2 ( 1 − x ) ln ⁡ x ln ⁡ 3 ( 1 + x ) 1 − x d x = − 17 π 2 120 ln ⁡ 5 2 + 21 4 ζ ( 3 ) ln ⁡ 4 2 − 13 π 4 144 ln ⁡ 3 2 + π 2 L i 4 ( 1 2 ) ln ⁡ 2 + 4 π 2 L i 5 ( 1 2 ) + 1023 16 ζ ( 5 ) ln ⁡ 2 2 − 97 π 2 16 ζ ( 3 ) ln ⁡ 2 2 − π 6 40 ln ⁡ 2 + 1197 32 ζ 2 ( 3 ) ln ⁡ 2 + 120 ζ ( 7 ) − 203 π 2 16 ζ ( 5 ) − 13 π 4 48 ζ ( 3 ) \int_0^1\frac{\ln^2(1-x)\ln x\ln^3(1+x)}{1-x}\mathrm{d}x=-\frac{17\pi^2}{120}\ln^52+\frac{21}{4}\zeta(3)\ln^42-\frac{13\pi^4}{144}\ln^32+\pi^2\mathrm{Li}_4(\frac{1}{2})\ln2+4\pi^2\mathrm{Li}_5(\frac{1}{2})+\frac{1023}{16}\zeta(5)\ln^22-\frac{97\pi^2}{16}\zeta(3)\ln^22-\frac{\pi^6}{40}\ln2+\frac{1197}{32}\zeta^2(3)\ln2+120\zeta(7)-\frac{203\pi^2}{16}\zeta(5)-\frac{13\pi^4}{48}\zeta(3) 011xln2(1x)lnxln3(1+x)dx=12017π2ln52+421ζ(3)ln4214413π4ln32+π2Li4(21)ln2+4π2Li5(21)+161023ζ(5)ln221697π2ζ(3)ln2240π6ln2+321197ζ2(3)ln2+120ζ(7)16203π2ζ(5)4813π4ζ(3)
Theorom   3 \textbf{Theorom 3} Theorom 3
∫ 0 1 ln ⁡ ( 1 − x ) ln ⁡ 3 x ln ⁡ 2 ( 1 + x ) 1 − x d x = 3 π 2 20 ln ⁡ 5 2 − π 4 6 ln ⁡ 3 2 + 6 π 2 L i 4 ( 1 2 ) ln ⁡ 2 + 12 π 2 L i 5 ( 1 2 ) + 93 2 ζ ( 5 ) ln ⁡ 2 2 − 21 π 2 8 ζ ( 3 ) ln ⁡ 2 2 − π 6 480 ln ⁡ 2 + 147 4 ζ 2 ( 3 ) ln ⁡ 2 + 180 ζ ( 7 ) − 93 π 2 4 ζ ( 5 ) − 13 π 4 24 ζ ( 3 ) \int_0^1\frac{\ln(1-x)\ln^3x\ln^2(1+x)}{1-x}\mathrm{d}x=\frac{3\pi^2}{20}\ln^52-\frac{\pi^4}{6}\ln^32+6\pi^2\mathrm{Li}_4(\frac{1}{2})\ln2+12\pi^2\mathrm{Li}_5(\frac{1}{2})+\frac{93}{2}\zeta(5)\ln^22-\frac{21\pi^2}{8}\zeta(3)\ln^22-\frac{\pi^6}{480}\ln2+\frac{147}{4}\zeta^2(3)\ln2+180\zeta(7)-\frac{93\pi^2}{4}\zeta(5)-\frac{13\pi^4}{24}\zeta(3) 011xln(1x)ln3xln2(1+x)dx=203π2ln526π4ln32+6π2Li4(21)ln2+12π2Li5(21)+293ζ(5)ln22821π2ζ(3)ln22480π6ln2+4147ζ2(3)ln2+180ζ(7)493π2ζ(5)2413π4ζ(3)

Contents

Chapter 0:Multiple zeta vules
0.1 Definition of Multiple zeta vules
0.2 Weight and level
Chapter 1:weight 2
1.1 The value and generalisation of Basel problem ζ ( 2 ) \zeta(2) ζ(2): ζ ( { 2 } l ) \zeta(\{2\}^l) ζ({2}l)
1.2 The nature of dilogarithm
1.3 Euler sums
Chapter 2:weight 3
2.1 The nature of trilogarithm
2.2 Combination integral method
Chapter 3:weight 4
3.1 Weight 4 logarithm integral, binary Euler sums
3.2 Weight 4 integral calculation
3.3 Weight 4 Euler sums calculation
3.3.1 High-order partial derivative value of Euler Beta function
3.3.2 Weight 5 Euler sums calculation
Chapter 4:weight 5
4.1 Binary Euler sums
4.2 Weight 5 integral calculation
4.2.1 Integral related to binary Euler sums
4.2.2 Integral related to ternary Euler sums
4.3 Weight 5 Euler sums calculation
4.4 Integral with Multiple polylogarithm
Chapter 5:weight 6
5.1 Weight 6 logarithm integral, binary Euler sums
5.2 Weight 6 integral calculation
5.3 Weight 6 Euler sums calculation
5.4 Weight 6 Multiple polylogarithm integral
Chapter 6:weight 7
6.1 Weight 7 logarithm integral, binary Euler sums
6.1.1 Use all methods of weight 6 to find logarithm integral
6.1.2 Ternary Euler sums theorem
6.1.3 The solution of i 5011 \mathbf{i_{5011}} i5011 and the improvement of logarithm integral
6.2 Weight 7 integral calculation
6.3 Weight 7 Euler sums calculation
6.4 Weight 7 Multiple polylogarithm integral

Chapter 0:Multiple zeta vules

Definition of Multiple zeta vules

Definition \textbf{Definition} Definition
ζ ( s 1 , s 2 , … , s i ‾ , … , s n ) = ∑ k 1 > k 2 > … > k i > … > k n ≥ 1 ( − 1 ) k i k 1 s 1 k 2 s 2 … k i s i … k n s n \zeta(s_1,s_2,…,\overline{s_i},…,s_n)=\sum\limits_{k_1>k_2>…>k_i>…>k_n\geq1}\frac{(-1)^{k_i}}{k_1^{s_1}k_2^{s_2}…k_i^{s_i}…k_n^{s_n}} ζ(s1,s2,,si,,sn)=k1>k2>>ki>>kn1k1s1k2s2kisiknsn(1)ki
The ordinary staggered zeta value has the following relationship with the reconciled zeta value: ζ ( s ‾ ) = ( 2 1 − s − 1 ) ζ ( s ) \zeta(\overline{s})=(2^{1-s}-1)\zeta(s) ζ(s)=(21s1)ζ(s)
For example, ζ ( 2 ‾ , 1 ) = ∑ n = 1 ∞ 1 n 2 ∑ m = 1 n − 1 1 m \zeta(\overline{2},1)=\sum\limits_{n=1}^\infty\frac{1}{n^2}\sum\limits_{m=1}^{n-1}\frac{1}{m} ζ(2,1)=n=1n21m=1n1m1
Definition \textbf{Definition} Definition
L i k 1 , k 2 , … , k n ( s 1 , s 2 , … , s n ) = ∑ j 1 > j 2 > … > j n ≥ 1 s 1 j 1 s 2 j 2 … s n j n j 1 k 1 j 2 k 2 … j n k n \mathrm{Li}_{k_1,k_2,…,k_n}(s_1,s_2,…,s_n)=\sum_{j_1>j_2>…>j_n\geq1}\frac{s_1^{j_1}s_2^{j_2}…s_n^{j_n}}{j_1^{k_1}j_2^{k_2}…j_n^{k_n}} Lik1,k2,,kn(s1,s2,,sn)=j1>j2>>jn1j1k1j2k2jnkns1j1s2j2snjn
and
L i k 1 , k 2 , … , k n ( s ) = ∑ j 1 > j 2 > … > j n ≥ 1 s j 1 j 1 k 1 j 2 k 2 … j n k n \mathrm{Li}_{k_1,k_2,…,k_n}(s)=\sum_{j_1>j_2>…>j_n\geq1}\frac{s^{j_1}}{j_1^{k_1}j_2^{k_2}…j_n^{k_n}} Lik1,k2,,kn(s)=j1>j2>>jn1j1k1j2k2jnknsj1
The above two functions can be used to mark:
f ( s , t , … , t ⏟ n   t = f ( s , { t } n ) f(s,\underbrace{t,…,t}_{n\, t}=f(s,\{t\}^n) f(s,nt t,,t=f(s,{t}n)

weight and level

weight: The amount of logarithmic product is the weight of logarithm.
level: level corresponds to the elements of different span sets. Only level 1 and level 2 are introduced here.
For level 1: The elements of the span set in level 1 are universal for all levels
For level 2: The mixed and staggered Multiple zeta vules will appear the span set element of level 2, which is the generalisation of the level 1 span set.
The above can be represented by set
C M Z V k n \mathbf{CMZV}_k^n CMZVkn
where k is the weight and n is the level.
For elements that weight k is not obtained by the product of the low-weight level n span set element, the element is represented by the set
C M Z V k n ~ \widetilde{\mathbf{CMZV}_k^n} CMZVkn

k = k= k= dim ⁡ C M Z V k 1 \dim\mathbf{CMZV}_k^1 dimCMZVk1spanning set
21 π 2 \textcolor{yellow}{\pi^2} π2
31 ζ ( 3 ) \textcolor{yellow}{\zeta(3)} ζ(3)
41 π 4 \pi^4 π4
52 ζ ( 5 ) , π 2 ζ ( 3 ) \textcolor{yellow}{\zeta(5)},\pi^2\zeta(3) ζ(5),π2ζ(3)
62 π 6 , ζ 2 ( 3 ) \pi^6,\zeta^2(3) π6,ζ2(3)
73 ζ ( 7 ) , π 2 ζ ( 5 ) , π 4 ζ ( 3 ) \textcolor{yellow}{\zeta(7)},\pi^2\zeta(5),\pi^4\zeta(3) ζ(7),π2ζ(5),π4ζ(3)
k = k= k= dim ⁡ C M Z V k 2 \dim\mathbf{CMZV}_k^2 dimCMZVk2spanning set
11 ln ⁡ 2 \textcolor{yellow}{\ln2} ln2
22 π 2 , ln ⁡ 2 2 \textcolor{yellow}{\pi^2},\ln^22 π2,ln22
33 ζ ( 3 ) , ln ⁡ 3 2 , π 2 ln ⁡ 2 \textcolor{yellow}{\zeta(3)},\ln^32,\pi^2\ln2 ζ(3),ln32,π2ln2
45 L i 4 ( 1 2 ) , ln ⁡ 4 2 , π 2 ln ⁡ 2 2 , ζ ( 3 ) ln ⁡ 2 , π 4 \textcolor{yellow}{\mathrm{Li}_4(\frac{1}{2})},\ln^42,\pi^2\ln^22,\zeta(3)\ln2,\pi^4 Li4(21),ln42,π2ln22,ζ(3)ln2,π4
58 ζ ( 5 ) , L i 5 ( 1 2 ) , ln ⁡ 5 2 , π 2 ln ⁡ 3 2 , ζ ( 3 ) ln ⁡ 2 2 , L i 4 ( 1 2 ) ln ⁡ 2 , π 4 ln ⁡ 2 , π 2 ζ ( 3 ) \textcolor{yellow}{\zeta(5)},\textcolor{yellow}{\mathrm{Li}_5(\frac{1}{2})},\ln^52,\pi^2\ln^32,\zeta(3)\ln^22,\mathrm{Li}_4(\frac{1}{2})\ln2,\pi^4\ln2,\pi^2\zeta(3) ζ(5),Li5(21),ln52,π2ln32,ζ(3)ln22,Li4(21)ln2,π4ln2,π2ζ(3)
613 L i 6 ( 1 2 ) , ζ ( 5 ‾ , 1 ) , ln ⁡ 6 2 , π 2 ln ⁡ 4 2 , ζ ( 3 ) ln ⁡ 3 2 , π 4 ln ⁡ 2 2 , L i 4 ( 1 2 ) ln ⁡ 2 2 , L i 5 ( 1 2 ) ln ⁡ 2 , π 2 L i 4 ( 1 2 ) , ζ ( 5 ) ln ⁡ 2 , π 2 ζ ( 3 ) ln ⁡ 2 , π 6 , ζ 2 ( 3 ) \textcolor{yellow}{\mathrm{Li}_6(\frac{1}{2})},\textcolor{yellow}{\zeta(\overline{5},1)},\ln^62,\pi^2\ln^42,\zeta(3)\ln^32,\pi^4\ln^22,\mathrm{Li}_4(\frac{1}{2})\ln^22,\mathrm{Li}_5(\frac{1}{2})\ln2,\pi^2\mathrm{Li}_4(\frac{1}{2}),\zeta(5)\ln2,\pi^2\zeta(3)\ln2,\pi^6,\zeta^2(3) Li6(21),ζ(5,1),ln62,π2ln42,ζ(3)ln32,π4ln22,Li4(21)ln22,Li5(21)ln2,π2Li4(21),ζ(5)ln2,π2ζ(3)ln2,π6,ζ2(3)
721 ζ ( 7 ) , L i 7 ( 1 2 ) , ζ ( 5 ‾ , 1 , 1 ) , ζ ( 5 , 1 ‾ , 1 ) , ln ⁡ 7 2 , π 2 ln ⁡ 5 2 , ζ ( 3 ) ln ⁡ 4 2 , π 4 ln ⁡ 3 2 , L i 4 ( 1 2 ) ln ⁡ 3 2 , L i 5 ( 1 2 ) ln ⁡ 2 2 , L i 6 ( 1 2 ) ln ⁡ 2 , π 2 L i 4 ( 1 2 ) ln ⁡ 2 , π 2 L i 5 ( 1 2 ) , ζ ( 3 ) L i 4 ( 1 2 ) , ζ ( 5 ) ln ⁡ 2 2 , π 2 ζ ( 3 ) ln ⁡ 2 2 , π 6 ln ⁡ 2 , ζ ( 5 ‾ , 1 ) ln ⁡ 2 , ζ 2 ( 3 ) ln ⁡ 2 , π 2 ζ ( 5 ) , π 4 ζ ( 3 ) \textcolor{yellow}{\zeta(7)},\textcolor{yellow}{\mathrm{Li}_7(\frac{1}{2})},\textcolor{yellow}{\zeta(\overline{5},1,1)},\textcolor{yellow}{\zeta(5,\overline{1},1)},\ln^72,\pi^2\ln^52,\zeta(3)\ln^42,\pi^4\ln^32,\mathrm{Li}_4(\frac{1}{2})\ln^32,\mathrm{Li}_5(\frac{1}{2})\ln^22,\mathrm{Li}_6(\frac{1}{2})\ln2,\pi^2\mathrm{Li}_4(\frac{1}{2})\ln2,\pi^2\mathrm{Li}_5(\frac{1}{2}),\zeta(3)\mathrm{Li}_4(\frac{1}{2}),\zeta(5)\ln^22,\pi^2\zeta(3)\ln^22,\pi^6\ln2,\zeta(\overline{5},1)\ln2,\zeta^2(3)\ln2,\pi^2\zeta(5),\pi^4\zeta(3) ζ(7),Li7(21),ζ(5,1,1),ζ(5,1,1),ln72,π2ln52,ζ(3)ln42,π4ln32,Li4(21)ln32,Li5(21)ln22,Li6(21)ln2,π2Li4(21)ln2,π2Li5(21),ζ(3)Li4(21),ζ(5)ln22,π2ζ(3)ln22,π6ln2,ζ(5,1)ln2,ζ2(3)ln2,π2ζ(5),π4ζ(3)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值