ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
to_string函数(数字转字符串)
string numStr = to_string(num);
检索字符串信息/复制字符串信息
- 记住字符串本质是数组,可以当做数组操作(下标操作)
范围for循环
- 大多数用于终止条件不明确/麻烦的时候
for(int a : array){
sum += a;//将数组的数相加,读作对于arr中的每一个a
for (char c : numStr)
{
if (c == '1')
{
count++;//求数字字符串中1出现的次数
}
}
sort排序函数
- 默认排序,按数字大小,字母顺序排序(从小到大)
- 这是从0到输入的最后一个,如果是从1开始可以左右两端各加一
sort(arr, arr+cnt);//cnt为数据的数量
int a[N]; // 普通数组定义
// 对 a 数组的[1, n]位置进行从小到大排序
sort(a + 1, a + 1 + n);
string s="bca";
sort(s.begin(),s.end()); //字符串内部排序,得到最小的排列“abc”
自定义排序方法,可以根据设定的排序方法排序(bool)
sort(node, node + n, cmp); //只能接受以函数为形式的自定义排序规则
//无法接受以结构体为形式的自定义排序规则
cmp是一个bool函数,返回true或false,或返回判断
bool cmp(int i, int j) {return (i < j);} //自定义小于
bool cmp(int i, int j) {return (i > j);} //自定义大于
bool cmp(stu a,stu b){//复杂bool函数
if(a.sum > b.sum) return true;
else if(a.sum < b.sum) return false;
else{ //a.sum == b.sum
if(a.c > b.c) return true;
else if(a.c < b.c) return false;
else{ //a.c == b.c
if(a.id > b.id) return false;
else return true;
}
}
}
pow幂函数
pow(x,y):用来计算以x 为底的 y 次方值,然后将结果返回
可用来求倍数问题
如上:864是由2和3两个因子组成的
#include<bits/stdc++.h>
int main()
{
long long x=59084709587505;//注意本题中只能用long long型
int sum=0;
for(long long i=0;pow(3,i)<=x;i++)//难点:pow(x,y)函数不仅是求x的y次方,还可以求解倍数问题!!!
{
for(long long j=0;pow(5,j)<=x;