凯凯的工厂正在有条不紊地生产一种神奇的零件,神奇的零件的生产过程自然也很神奇。工厂里有 n 位工人,工人们从 1~n 编号。某些工人之间存在双向的零件传送带。保证每两名工人之间最多只存在一条传送带。
如果 x 号工人想生产一个被加工到第 L(L>1) 阶段的零件,则所有与 x 号工人有传送带直接相连的工人,都需要生产一个被加工到第 L-1 阶段的零件(但 x 号工人自己无需生产第 L-1 阶段的零件)。
如果 x 号工人想生产一个被加工到第 1 阶段的零件,则所有与 x 号工人有传送带直接相连的工人,都需要为 x 号工人提供一个原材料。
轩轩是 1 号工人。现在给出 q 张工单,第 i 张工单表示编号为 ai 的工人想生产一个第 Li 阶段的零件。轩轩想知道对于每张工单,他是否需要给别人提供原材料。他知道聪明的你一定可以帮他计算出来!
输入格式:
第一行三个正整数 n,m 和 q,分别表示工人的数目、传送带的数目和工单的数目。
接下来 m 行,每行两个正整数 u 和 u,表示编号为 u 和 u 的工人之间存在一条零件传输带。保证 u != u。
接下来 q 行,每行两个正整数 a 和 L,表示编号为 a 的工人想生产一个第 L 阶段的零件。
输出格式:
共 q 行,每行一个字符串 Yes
或者 No
。如果按照第 i 张工单生产,需要编号为 1 的轩轩提供原材料,则在第 i 行输出 Yes
;否则在第 i 行输出 No
。注意输出不含引号。
输入样例1:
3 2 6
1 2
2 3
1 1
2 1
3 1
1 2
2 2
3 2
输出样例1:
No
Yes
No
Yes
No
Yes
输入样例2:
5 5 5
1 2
2 3
3 4
4 5
1 5
1 1
1 2
1 3
1 4
1 5
输出样例:
No
Yes
No
Yes
Yes
样例 1 说明
编号为 1 的工人想生产第 1 阶段的零件,需要编号为 2 的工人提供原材料。
编号为 2 的工人想生产第 1 阶段的零件,需要编号为 1 和 3 的工人提供原材料。
编号为 3 的工人想生产第 1 阶段的零件,需要编号为 2 的工人提供原材料。
编号为 1 的工人想生产第 2 阶段的零件,需要编号为 2 的工人生产第 1 阶段的零 件,需要编号为 1 和 3 的工人提供原材料。
编号为 2 的工人想生产第 2 阶段的零件,需要编号为 1 和 3 的工人生产第 1 阶段的零件,他/她们都需要编号为 2 的工人提供原材料。
编号为 3 的工人想生产第 2 阶段的零件,需要编号为 2 的工人生产第 1 阶段的零件,需要编号为 1 和 3 的工人提供原材料。
样例 2 说明
编号为 1 的工人想生产第 1 阶段的零件,需要编号为 2 和 5 的工人提供原材料。
编号为 1 的工人想生产第 2 阶段的零件,需要编号为 2 和 5 的工人生产第 1 阶段的零件,需要编号为 1,3,4 的工人提供原材料。
编号为 1 的工人想生产第 3 阶段的零件,需要编号为 2 和 5 的工人生产第 2 阶段的零件,需要编号为 1,3,4 的工人生产第 1 阶段的零件,需要编号为 2,3,4,5 的工人提供原材料。
编号为 1 的工人想生产第 4 阶段的零件,需要编号为 2 和 5 的工人生产第 3 阶段的零件,需要编号为 1,3,4 的工人生产第 2 阶段的零件,需要编号为 2,3,4,5 的工人生产第 1 阶段的零件,需要全部工人提供原材料。
编号为 1 的工人想生产第 5 阶段的零件,需要编号为 2 和 5 的工人生产第 4 阶段的零件,需要编号为 1,3,4 的工人生产第 3 阶段的零件,需要编号为 2,3,4,5 的工人生产第 2 阶段的零件,需要全部工人生产第 1 阶段的零件,需要全部工人提供原材料。
数据规模与约定
共 20 个测试点。
对所有测试点保证 1<=u,u,a<=n。
测试点 1~5,1<=n,m<=1000,q=3,L=1。
测试点 5~8,1<=n,m<=1000,q=3,1<=L<=10。
测试点 9~12,1<=n,m,L<=1000,1<=q<=100。
测试点 13~16,1<=n,m,L<=1000,1<=q<=10^5。
测试点 17~20,1<=n,m,q<=10^5,1<=L<=10^5。
#include<bits/stdc++.h>
#define int long long
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define endl '\n'
#define pb push_back
#define S second
#define F first
using namespace std;
typedef long long ll;
const int MAXN=100005;
int n,m,q;
vector<int>g[MAXN];
int dis[MAXN][2]; // 0为走偶数条边的最短路, 1为走奇数条边的最短路
void dj(int s){
queue<int>q;
memset(dis,0x3f,sizeof(dis));
dis[s][0]=0;
q.push(s);
while(q.size()){
int t=q.front();
q.pop();
for(auto v:g[t]){
if(dis[v][0]>dis[t][1]+1){
dis[v][0]=dis[t][1]+1;
q.push(v);
}
if(dis[v][1]>dis[t][0]+1){
dis[v][1]=dis[t][0]+1;
q.push(v);
}
}
}
}
signed main(){
cin>>n>>m>>q;
for(int i=1;i<=m;i++){
int x, y;
cin>>x>>y;
g[x].pb(y),g[y].pb(x);
}
dj(1);
for(int i=1;i<=q;i++){
int x,y;
cin>>x>>y;
if(dis[x][0]==y||dis[x][1]==y||(dis[x][1]<y&&(y-dis[x][1])%2==0)||(dis[x][0]<y&&(y-dis[x][0])%2==0)){ // 判断是否可行
cout<<"Yes"<<endl;
}else{
cout<<"No"<<endl;
}
}
return 0;
}