题目:
有效 IP 地址 正好由四个整数(每个整数位于 0
到 255
之间组成,且不能含有前导 0
),整数之间用 '.'
分隔。
- 例如:
"0.1.2.201"
和"192.168.1.1"
是 有效 IP 地址,但是"0.011.255.245"
、"192.168.1.312"
和"192.168@1.1"
是 无效 IP 地址。
给定一个只包含数字的字符串 s
,用以表示一个 IP 地址,返回所有可能的有效 IP 地址,这些地址可以通过在 s
中插入 '.'
来形成。你 不能 重新排序或删除 s
中的任何数字。你可以按 任何 顺序返回答案。
示例 1:
输入:s = "25525511135" 输出:["255.255.11.135","255.255.111.35"]
示例 2:
输入:s = "0000" 输出:["0.0.0.0"]
示例 3:
输入:s = "101023" 输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
提示:
1 <= s.length <= 20
s
仅由数字组成
思路:
这道题其实就是切割问题,切割问题就可以使用回溯搜索法把所有可能性搜出来
回溯模板:
def backtracking(self, 参数):
if (终止条件):
存放结果
return
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)
处理节点
self.backtracking(路径,选择列表) # 递归
回溯,撤销处理结果
判断子串是否合法
最后就是在写一个判断段位是否是有效段位了。
主要考虑到如下两点:
- 段位以0为开头的数字不合法
- 段位如果大于255了不合法
代码:
from typing import List
class Solution:
def restoreIpAddresses(self, s: str) -> List[str]:
result = []
self.backtracking(s, 0, "", result, 0) # 调用回溯方法
return result
def backtracking(self, s, startIndex, path, result, point_num):
# 如果已经有3个点并且剩余部分是有效的IP地址,则将路径添加到结果中
if point_num == 3 and self.isValid(s, startIndex, len(s) - 1):
path = path + s[startIndex:] # 将剩余部分添加到路径
result.append(path) # 将路径添加到结果列表
return
# 遍历所有可能的IP地址组合
for i in range(startIndex, len(s):
if self.isValid(s, startIndex, i): # 如果当前部分是有效的IP地址
sub = s[startIndex:i + 1] + '.' # 将当前部分添加到路径
self.backtracking(s, i + 1, path + sub, result, point_num + 1) # 递归调用,继续寻找下一部分IP地址 隐藏回溯
def isValid(self, s, start, end):
if start > end:
return False
if s[start] == '0' and start != end: # 如果当前部分以0开头但不止一位,则不是有效的IP地址
return False
num = 0
while start <= end:
num = num * 10 + int(s[start]) # 计算当前部分的数字值
start += 1
if num > 255: # 如果当前部分大于255,则不是有效的IP地址
return False
return True # 当前部分是有效的IP地址