前言
本专栏博客将会带大家讲解图论中的最小生成树问题和二分图问题。
其中最小生成树中有两种算法,一种是Prim算法,Prim算法又分为朴素版的Prim(时间复杂度 O ( n 2 ) O(n^2) O(n2))和堆优化版的Prim(时间复杂度 O ( m l o g n ) O(mlogn) O(mlogn))(跟Dijkstra算法分类一样,写法也很类似);另一种是Kruskal算法(时间复杂度 O ( m l o g m ) O(mlogm) O(mlogm))。
朴素版Prim算法适合用稠密图,而堆优化版Prim和Kruskal算法适合用稀疏图。堆优化版的Prim算法很少用(99%用不到),所以本专栏博客不对其进行讲解。如果对稠密图和稀疏图的概念和构造还不清楚,可以参考Dijkstra求最短路篇一(全网最详细讲解两种方法,适合小白)(python,其他语言也适用)(超简单的邻接矩阵的构建)和Dijkstra求最短路篇二(全网最详细讲解两种方法,适合小白)(python,其他语言也适用)(超简单的邻接表的构建)
题目
题目链接:858. Prim算法求最小生成树
给定一个
n
n
n 个点
m
m
m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图
G
=
(
V
,
E
)
G=(V,E)
G=(V,E),其中
V
V
V 表示图中点的集合,
E
E
E 表示图中边的集合,
n
=
∣
V
∣
n=|V|
n=∣V∣,
m
=
∣
E
∣
m=|E|
m=∣E∣。
由
V
V
V 中的全部
n
n
n 个顶点和
E
E
E 中
n
−
1
n−1
n−1 条边构成的无向连通子图被称为
G
G
G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图
G
G
G 的最小生成树。
输入格式
第一行包含两个整数
n
n
n 和
m
m
m。
接下来
m
m
m 行,每行包含三个整数
u
,
v
,
w
u,v,w
u,v,w,表示点
u
u
u 和点
v
v
v 之间存在一条权值为
w
w
w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1
≤
n
≤
500
,
1≤n≤500,
1≤n≤500,
1
≤
m
≤
1
0
5
,
1≤m≤10^5,
1≤m≤105,
图中涉及边的边权的绝对值均不超过
10000
10000
10000。
输入样例
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例
6
Prim算法
Prim 算法干的事情是:给定一个无向图,在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中,叫做求最小生成树。
Prim 算法采用的是一种贪心的策略。
每次将离连通部分的最近的点和点对应的边加入的连通部分,连通部分逐渐扩大,最后将整个图连通起来,并且边长之和最小。
我们将图中各个节点用数字 1 ~ n 编号。
要将所有景点连通起来,并且边长之和最小,步骤如下:
- 用一个 state 数组表示节点是否已经连通。state[i] 为真,表示已经连通,state[i] 为假,表示还没有连通。初始时,state 各个元素为假。即所有点还没有连通。
用一个 dist 数组保存各个点到连通部分的最短距离,dist[i] 表示 i 节点到连通部分的最短距离。初始时,dist 数组的各个元素为无穷大。
用一个 pre 数组保存节点的是和谁连通的。pre[i] = k 表示节点 i 和节点 k 之间需要有一条边。初始时,pre 的各个元素置为 -1(初始值不在1~n号点之间都可以)。
2. 从 1 号节点开始扩充连通的部分,所以 1 号节点与连通部分的最短距离为 0,即disti[1] 置为 0。
-
遍历 dist 数组,找到一个还没有连通起来,但是距离连通部分最近的点,假设该节点的编号是 i。i节点就是下一个应该加入连通部分的节点,stata[i] 置为 1。
用青色点表示还没有连通起来的点,红色点表示连通起来的点。
这里青色点中距离最小的是 dist[1],因此 state[1] 置为 1。
-
遍历所有与 i 相连但没有加入到连通部分的点 j,如果 j 距离连通部分的距离大于 i j 之间的距离,即 dist[j] > num[i][j](num[i][j] 为 i j 节点之间的距离),则更新 dist[j] 为 num[i][j]。这时候表示,j 到连通部分的最短方式是和 i 相连,因此,更新pre[j] = i。
与节点 1 相连的有 2, 3, 4 号节点。1->2 的距离为 100,小于 dist[2],dist[2] 更新为 100,pre[2] 更新为1。1->4 的距离为 140,小于 dist[4],dist[4] 更新为 140,pre[2] 更新为1。1->3 的距离为 150,小于 dist[3],dist[3] 更新为 150,pre[3] 更新为1。
5. 重复 3 4步骤,直到所有节点的状态都被置为 1.
这里青色点中距离最小的是 dist[2],因此 state[2] 置为 1。
与节点 2 相连的有 5, 4号节点。2->5 的距离为 80,小于 dist[5],dist[5] 更新为 80,pre[5] 更新为 2。2->4 的距离为 80,小于 dist[4],dist[4] 更新为 80,pre[4] 更新为2。
选dist[4],更新dist[3],dist[5],pre[3],pre[5]。
选dist[5],没有可更新的。
选dist[3],没有可更新的。
- 此时 dist 数组中保存了各个节点需要修的路长,加起来就是。pre 数组中保存了需要选择的边。
详细代码
n, m = map(int, input().split())
num = [[float('inf') for i in range(n + 1)] for j in range(n + 1)] # 用邻接矩阵存储图
for i in range(m):
a, b, w = map(int, input().split())
# 因为是无向图,所以a到b和b到a的权重是一样的,并且取两者中的较小值
num[a][b] = num[b][a] = min(num[a][b], w)
dist = [float('inf')] * (n + 1) # 存储各个节点到生成树的距离
dist[1] = 0 # 从 1 号节点开始生成
# 初始化一个数组state,用于标记各个节点是否已经被加入到最小生成树中,初始值都为False
state = [False] * (n + 1)
# 初始化一个数组pre,用于记录最小生成树中每个节点的前驱节点,方便最后输出路径,初始值都为-1
pre = [-1] * (n + 1) # 节点的前驱节点
def prim():
res = 0
for i in range(n): # 每次循环选出一个点加入到生成树
t = -1 # 初始化选择的节点为-1,表示还没有选择
# 遍历所有节点,找出距离最小生成树最近的且还未被加入的节点
for j in range(1, n + 1):
if (not state[j]) and (t == -1 or dist[t] > dist[j]): # 如果没有在树中,且到树的距离最短,则选择该点
t = j
# 如果找到的最短距离仍然是正无穷大,说明存在孤立点,无法形成最小生成树
if dist[t] == float('inf'):
print('impossible')
return
# 将找到的节点t加入到最小生成树中,并累加其权重到结果中
res += dist[t]
state[t] = True # 把该节点加入到生成树中
for j in range(1, n + 1): # 更新生成树外的点到生成树的距离
if dist[j] > num[t][j] and not state[j]: # 从 t 到节点 j 的距离小于原来距离(且j不在生成树中),则更新。
dist[j] = num[t][j] # 更新距离
pre[j] = t # 从 t 到 j 的距离更短,j 的前驱变为 t.
# 输出最小生成树的总权重
print(res)
prim() # 求最小生成树
# 下面的代码是可选的,用于输出最小生成树的路径(从节点1到所有其他节点的路径)
# 但由于题目没有要求输出路径,所以这部分代码被注释掉了
# for i in range(n , 0, -1): # 从n到1逆序输出,因为是从1开始的编号
# print(i, pre[i]) # 输出当前节点和它的前驱节点