本期给大家讲解此题解题过程,也是讲解volatility2的工具使用,让我们先学习一下电子取证的是什么
一、发展历程与关键阶段
-
奠基时期(1984-1995年)
- FBI成立计算机分析响应组(CART),提出“计算机潜在证据”概念;
- 美国近半数司法机关建立计算机取证实验室 。
-
初步发展(1990年代末)
- 代表性工具涌现:EnCase(数据收集分析)、DIBS(数据镜像备份)等;
- 密码破解工具、磁盘分区搜索工具(如FREESECS)投入使用 。
-
理论完善(2000年至今)
- 形成五大过程模型:基本过程、事件响应、法律执行等;
- 中国启动电子取证研究,纳入国家课题(如GB/T 29360-2012等标准) 。
二、技术类别与核心领域
-
技术分类
- 数据恢复技术:修复被物理破坏的硬盘、解密加密文件,需精通磁盘结构与文件系统。
- 网络取证:分析网络流量、日志(如防火墙、IDS日志)追踪攻击源 。
- 移动设备取证:针对手机芯片、加密数据的提取(如iPhone的BFU/AFU状态分析) 。
- 云计算与物联网取证:提取虚拟机快照、传感器数据等新兴来源的证据 。
-
应用场景
- 刑事侦查:公安/检察院主导,技术标准较完善(如GA/T 1069-2013手机检验规范) 。
- 民事/行政诉讼:普通用户意识不足,缺乏适配工具 。
- 企业安全:内部数据泄露调查、知识产权保护 。
三、取证流程与技术挑战
-
标准化流程
- 保护现场:封锁设备,避免数据篡改(如使用硬盘拷贝机克隆原始数据) 。
- 数据获取与分析:通过镜像工具(如EnCase)、日志分析工具(如Volatility)提取证据链 。
- 司法验证:需符合《公安机关电子数据鉴定规则》等法规,确保证据合法性 。
-
技术难点
- 数据易失性:内存数据易丢失,需快速响应 。
- 反取证技术:如数据隐写、全盘加密、匿名网络(Tor)对抗 。
- 新兴技术挑战:区块链、GPU恶意软件等新型证据源的复杂性 。
四、工具与案例实践
-
常用工具
- 数据捕获:Magnet AXIOM、FTK Imager。
- 网络分析:Wireshark、NFR。
- 移动设备:Cellebrite(物理取证)、APP取证魔方(动态行为监控) 。
-
典型案例
- 跨境电信诈骗:通过恢复Skype聊天记录、Excel文档锁定犯罪集团,涉及电子证据合法性审查 。
- 个人信息泄露:南昌市检察院利用APP取证魔方检测违规收集用户数据的应用,推动公益诉讼 。
五、挑战与未来趋势
-
当前问题
- 法律滞后:新兴技术(如AI生成内容)的取证标准尚未完善 。
- 人才缺口:需兼具技术(如数据库、密码学)与法律知识的复合型人才 。
-
发展趋势
- AI辅助分析:如ChatGPT生成基础脚本,但深度分析仍需人工干预 。
- 硬件级安全:依赖安全芯片(如iPhone安全隔区)提升加密等级 。
- 标准化扩展:覆盖物联网、工业控制系统(ICS)等新场景 。
总结
信息安全电子取证是技术与法律交叉的前沿领域,需应对技术快速迭代与法律适配的双重挑战。随着云计算、AI等技术的普及,未来将更依赖自动化工具与专业化人才的协同,以保障电子证据在司法实践中的有效性和权威性。
正片开始
volatility -f WIN-BU6IJ7FI9RU-20190927-152050.raw imageinfo
imageinfo:查看镜像基本信息
volatility -f WIN-BU6IJ7FI9RU-20190927-152050.raw --profile=Win7SP1x86_23418 hashdump
hashdump:查看账户密码哈希值
0a640404b5c386ab12092587fe19cd02