自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(232)
  • 收藏
  • 关注

原创 RAG知识库系统全攻略:从零搭建到大模型知识库,附完整代码实现

文章系统介绍了RAG检索增强生成技术,详细解析了其核心原理、发展历程及从零搭建的完整流程。通过七个关键步骤(文件上传、内容提取、文本拆分、向量化、向量存储、检索和生成),构建了完整的RAG技术闭环。文章不仅解释了各环节的技术要点,还提供了实操代码示例,帮助读者理解如何解决大模型幻觉、知识更新滞后和缺乏可追溯性等痛点。这份指南适合初学者系统学习RAG技术,也为开发者提供了实用的实践参考。

2026-01-23 20:45:24 191

原创 金融AI的可靠性革命:Henon Zero-Error RAG系统技术解析与实践应用

Henon推出全球首个Zero-Error RAG系统,专为金融工作流设计,通过"零误差验证层"的四重保障机制,将AI幻觉率从传统RAG系统的8-15%降至接近零。该系统采用"生成中约束"架构,在智能解析、事实核查、交叉验证、溯源追踪和一致性检测方面实现突破,满足金融行业对AI"零容忍"的可靠性要求。虽然处理速度降低30%,但整体效率仍远超人工,为金融机构从"能用"到"敢用"AI提供了可靠路径。

2026-01-23 20:43:48 168

原创 让大模型真正“干活“:LangChain与Python MCP集成深度解析,解决开发者6大痛点

本文分析了LangChain与Python MCP集成的六大核心挑战:接口抽象冲突、状态管理不一致、性能损耗、版本兼容性问题、调试困难及安全管控缺口。提出标准化适配、统一状态管理、性能优化等解决方案,强调需平衡灵活性与标准化,根据场景取舍适配层设计。

2026-01-22 19:01:40 599

原创 MCP协议详解:AI时代大模型与工具交互的标准化解决方案

MCP是Anthropic推出的开放标准协议,旨在解决大模型与外部工具、数据源间的交互壁垒。它采用client-host-server架构,通过标准化通信实现大模型与数据库、文件系统、API等资源的连接。MCP提供Tools、Resources和Prompts三种功能,使AI应用能访问本地文件、数据库和外部API,增强功能并改善用户体验。开发者可借助MCP减少构建AI应用的复杂性,而用户则能获得功能更强大的AI应用。

2026-01-22 19:00:39 450

原创 大模型本地化部署与微调实战指南:从入门到精通

文章探讨了大模型在垂直领域的应用挑战,包括幻觉和时效性问题,提出了检索增强生成(RAG)和微调(Fine-tuning)两种解决方案。详细介绍了微调的种类、工具框架及费用估算方法,以及实际操作流程。通过这些技术手段,可以增强大模型在特定领域的专业知识掌握能力,减少幻觉现象,提供更准确且最新的内容。

2026-01-13 17:44:31 740

原创 大语言模型完整技术栈:从理论到实践的全面指南

文章系统介绍了大模型微调技术的发展历程,从2018年全参数微调到2023年的偏好对齐技术,包括特征提取、Adapter、LoRA、提示微调、指令微调等方法。分析了各种微调技术的原理、特点和适用场景,解释了微调为何在大模型时代取代从零训练,并提供了根据实际业务需求选择合适微调方法的实用建议。

2026-01-13 17:43:25 639

原创 万字长文综述大模型核心技术:微调、推理与优化指南

内容涵盖了**语言建模**、**预训练**面临的挑战、**量化技术**、**分布式训练方法**,以及大语言模型的**微调**。此外,还讨论了参数高效**微调(PEFT)技术**,包括**适配器**、**LoRA**和**QLoRA**;介绍了**提示策略**、模型压缩方法(如**剪枝和量化**),以及各种**量化技术**(**GPTQ、NF4、GGML**)。

2026-01-08 10:53:24 588

原创 一文搞清微调技术的发展与演进

现在的大语言模型发展得非常快,从几亿参数到千亿参数,不仅模型越来越大,能力也越来越强。但是在实际工作中,我们很少会从零开始训练一个这样的巨无霸模型,因为那样的成本和资源需求实在太高了。更多的时候,我们会先用一个现成的强大模型,然后根据自己的需求对它做一些“微调”,让它更懂我们的领域、更符合我们的业务和价值观。

2026-01-08 10:51:58 851

原创 智能体(Agent)完全指南:从基础架构到主流框架深度解析

本文全面介绍了智能体(Agent)的核心概念与实现方法。文章阐述了智能体基础理论(PEAS模型、智能体循环、提示工程),对比了智能体与传统工作流的本质区别,详解了模型参数调优和三种主流架构(ReAct、Plan-and-Solve、Reflection),并分析了AutoGen、AgentScope、CAMEL和LangGraph等框架特点与适用场景,同时介绍了低代码开发平台和本地推理工具,为开发者构建智能体系统提供了完整的技术路径。

2026-01-07 18:16:05 733

原创 大型语言模型微调Fine-Tuning技术——14种主流方法的原理、适用场景及实践指南

LLM 训练时间和的成本太过庞大,况且个人卷训练经验极为困难,不妨从微调开始搞起。本文对正经的微调方法进行了总结,继续打怪,继续升级~提示:本文对当前常见的微调技术都进行了罗列,由于结合了论文和网络资料导致文章很长,可以先看总结部分先对概念有些印象,如果需要用到对应的微调技术再进行原理探究。

2026-01-07 18:15:12 840

原创 小白也能懂!知识图谱构建全流程与大模型应用指南

小白也能懂!知识图谱构建全流程与大模型应用指南

2025-12-31 18:55:46 825

原创 AI Agent底层逻辑:思考-行动-观察循环揭秘,3个技巧让你掌握大模型新形态

文章介绍了AI Agent(智能体)的底层逻辑和工作原理。AI应用正从简单的聊天助手进化为全能助理,其核心是"思考→行动→观察"的循环过程。Agent由大模型(大脑)、工具(手脚)和基本循环(流程)组成。文章提供了三个实用技巧:帮助Agent思考、提供精确的背景信息、创新式使用工具。理解这些原理能帮助用户更好地驾驭AI工具,发挥其最大效能。

2025-12-31 18:55:02 1183

原创 大模型训练实战指南:从理论到万卡并行,十二月必收藏!

本文介绍了一本全面讲解大模型训练的新书,特别强调企业级模型训练的实践方法,涵盖分布式训练、并发处理等关键技术。书籍从大模型发展历史、理论基础、训练方法到架构演进均有详细阐述,理论与实践紧密结合,图文并茂保证可读性,适合想深入了解大模型训练的程序员和小白读者。

2025-12-29 18:45:02 715

原创 谷歌提出嵌套学习(NL)新范式!

谷歌提出嵌套学习(NL)新范式,将模型结构视为嵌套优化问题的组合,突破传统LLMs无法持续学习的局限。基于NL开发了深度优化器、自修正Titans和持续体记忆系统三大核心成果,构建出HOPE学习模块。实验表明,HOPE在语言建模、持续学习和长上下文推理等任务中表现优异,为实现真正具备持续学习能力的下一代大模型提供了可行路径。

2025-12-29 18:44:13 726

原创 大模型杀不死产品经理,但未来我们可能要做“产品界的 OnlyFans”

这是一篇合辑文,近期跟很多朋友交流了下大模型应用的感受,也有不少观点碰撞,其中很多内容实际上一脉同源,于是整理一下。这篇文章也不讲究什么行文逻辑了,由观点引出观点,用臆测评价臆测,主打一个自己说得舒坦。明确一个贯穿全文的观点:我越来越相信大模型无法取代产品经理,甚至觉得产品经理的下一波春天要到来了。

2025-12-23 14:13:15 1034

原创 告别AI黑话!程序员入门大模型的必备术语详解,建议收藏

本文以通俗易懂的方式解释了AI和大模型领域的15个核心术语,包括序列化、反序列化、解析、解析器、块、词元、向量、嵌入、检索增强生成(RAG)、提示词、温度、TOP P、LLM、预训练和微调等。作者旨在帮助初学者理解这些"行业黑话",消除学习障碍,避免被专业术语吓退。这些术语是理解大模型工作原理的基础,掌握它们有助于更好地学习和应用AI技术。

2025-12-23 14:11:57 666

原创 企业级AI Agent的困境与破局之道,小白也能快速上手!

本文探讨企业级AI Agent面临的困境,包括模型本身问题(不一致、不真实、不及时)和工程化落地难度被低估。同时指出数据安全、合规审计是企业级应用的关键挑战。文章提出破局之道是需要工程化能力完备、与业务系统深度集成、具备企业级安全保障的Agent平台,并以金蝶苍穹Agent平台为例,介绍了其内置业务模板、开放技术标准和企业级安全等解决方案。

2025-12-20 09:49:32 957

原创 AI大模型在反垄断法中的妙用:从可乐果汁案看市场界定与模型对比

该文对比测试了国内主流AI大模型在反垄断法相关市场界定问题上的表现,发现这些模型可提供分析框架、提高信息检索效率,通过丰富关键词和细化提问可获得更科学的分析结果。虽然存在不足,但通过比较不同模型结果可"取长补短"。AI大模型的使用有助于降低举报或起诉滥用市场支配地位行为的难度,对推动反垄断法实践发展有积极意义。

2025-12-20 09:48:35 595

原创 Open Notebook:打造私有化AI助手,16种模型本地部署教程

本文介绍了Google的NotebookLM及其开源替代品Open Notebook。该工具支持16种AI模型,可在本地部署,保障数据隐私,支持多种格式导入,具备灵活权限控制和多角色语音功能。文章提供详细Docker部署方法,对比两个工具的优缺点,为追求数据安全和离线运行需求的用户提供了理想选择。

2025-12-19 19:15:11 1781

原创 谷歌开源computer-use-preview:AI Agent如何操控电脑?架构设计与实战解析

文章介绍谷歌开源的computer-use-preview项目,这是一个让AI直接操控电脑的Agent框架。它采用三层架构:BrowserAgent智能层、Computer接口抽象层和Playwright/Browserbase执行层。主要技术特点包括坐标归一化、截图滑动窗口和新页面劫持。该框架成本较高(每步约$0.002+),速度较慢(单步3-6秒),目前仅适配Chrome,面临页面加载完整性、弹窗广告等挑战。

2025-12-19 19:14:22 596

原创 GraphRAG深度解析:解锁大模型推理能力,必学技术收藏

本文探讨了传统RAG架构在大模型应用中的局限性,特别是在处理复杂关系和全局性问题上的瓶颈。GraphRAG通过整合知识图谱与RAG技术,将非结构化数据转化为结构化认知,实现从"搜索数据"到"推理洞察"的质变。GraphRAG具备多跳推理、全局总结和可解释性三大优势,同时也面临构建成本、图谱维护等挑战。未来大模型应用将向Vector+Graph的混合模式发展,为用户提供更智能、更全面的AI服务。

2025-12-18 17:36:20 1061

原创 提示词工程完全指南:从原理到实战,让你精准驾驭大模型

本文系统介绍了提示词工程的原理、技巧与实战应用,包括6大核心原则(明确目标、补充上下文、提供示例、设定角色、规范格式、适配沟通风格)和进阶技巧(分隔符使用、思维链、输出控制等),针对不同模型提供适配策略,结合网络安全等场景案例解析设计方法,帮助用户提升与大模型交互效率,降低使用门槛,实现精准引导模型输出高质量结果。

2025-12-18 17:35:12 1083

原创 AI Agent全解析:从第一性原理到多Agent协作,程序员必学的大模型进阶指南

本文深入探讨了AI Agent的理论基础与第一性原理,详细分析了Agent协作技术从"手艺人"到"现代企业组织"的五个发展阶段,概述了Agent在算力、知识记忆、预测和动作执行方面的核心能力。文章展望了未来技术发展方向,包括大模型专业化、多模态能力提升、减少人类指令输入、数据共享与应用扩展,强调不同协作阶段各有适用场景,共同构成AI技术发展生态。

2025-12-16 18:34:34 538

原创 构建高效RAG系统:21种文本分块策略全解析,程序员必备收藏指南

本文详解RAG系统中的21种文本分块策略,从基础方法(换行符分割、固定大小分块)到高级技术(语义分块、智能代理分块),分析各策略适用场景与实现方式。强调分块策略对RAG系统性能的关键影响,为开发者构建可靠RAG系统提供全面指导。

2025-12-16 18:33:05 801

原创 从RAG工程到API调用:Google File Search带来的技术变革

Google Gemini的File Search将RAG技术从复杂的工程流程简化为内置API功能,开发者只需上传文件即可自动完成检索、分块、索引等步骤。这一变革降低了技术门槛,但也使工程师失去了对系统的理解权和掌控权,权力从工程师向平台集中。RAG从需要掌握的知识变成了被调用的功能,工程师角色从"构建系统"变为"调用系统"。这种技术抽象化虽提高了效率,但也改变了技术边界,使复杂被隐藏,个人理解被平台信任所替代。

2025-12-15 11:38:58 825

原创 构建高效RAG系统:21种文本分块策略全解析,附代码实现

文章系统介绍了RAG系统中的21种文本分块策略,从基础方法(换行符分割、固定大小分块)到高级技术(语义分块、递归分块),每种策略均详细分析适用场景、技术要点并提供代码实现。这些方法针对不同数据类型和应用场景设计,能显著提升检索质量和生成效果,是构建可靠RAG系统的关键技术。

2025-12-15 11:37:44 836

原创 LangChain从零开始:手把手教你构建大模型应用,解锁AI开发新技能

文章详细介绍了LangChain框架,它是连接大语言模型和现实世界的桥梁。通过组件化设计,LangChain解决了大模型的三大局限性:知识过期、无记忆能力和缺乏工具使用能力。文章从环境搭建开始,逐步介绍了基础工作流、记忆功能、RAG检索增强生成、Agents工具使用,以及使用Streamlit构建网页界面,最后通过LangGraph展示了复杂的流程编排。这篇教程为开发者提供了完整的实战路径,帮助构建自己的AI应用。

2025-12-12 18:12:41 617

原创 让AI为你打工的提示词工程全攻略,程序员必学

文章强调高效AI交互的核心是"如何有效提问",而非技术黑话。作者基于2001年经典指南提出七大原则:先做功课而非伸手党;描述现象而非猜测原因;目标导向而非步骤导向;保持简洁具体结构化;先求关键指引而非完整答案;礼貌并形成反馈闭环。这些原则能帮助用户获得更精准、高效的AI回应,真正掌握与AI协作的艺术。

2025-12-12 18:11:47 1158

原创 收藏必看!大模型微调技术详解:11种高效方法对比与应用

这篇文章详细介绍了11种大型语言模型的参数高效微调方法,包括前缀调优、LORA及其变种、QLORA、LongLORA等。这些方法通过冻结预训练模型参数,仅优化少量特定参数或向量,实现模型适应特定任务,显著减少计算和存储资源需求,同时保持模型性能,为不同场景下的大模型微调提供了多样化的解决方案。

2025-12-11 12:02:50 1218

原创 大模型微调完全指南:从基础到高级,程序员必学收藏详解

本文全面介绍了大模型微调技术,包括微调基本概念、监督微调(SFT)方法、领域模型适配策略以及参数高效微调(PEFT)技术。详细对比了全参数微调与LoRA、Adapter等高效微调方法的优缺点,探讨了数据准备、模型选择、显存优化等关键问题,帮助读者掌握大模型微调的核心知识与实用技巧。

2025-12-11 12:02:00 147

原创 Graphiti 新 MCP 服务器:构建动态知识图谱,打造AI智能体记忆系统

Graphiti 是一个构建和查询时间感知知识图谱的开源框架,专为动态环境中的AI智能体设计。它支持实时增量更新、双时间数据模型和高效混合检索,与传统RAG方法相比能更好地处理动态数据。Graphiti 提供了MCP服务器实现,可与Claude、Cursor等客户端集成,支持多种LLM提供商和数据库后端,帮助开发者构建具有上下文感知和精确历史查询能力的AI应用。

2025-12-10 17:27:24 828

原创 三种大模型本地知识库搭建方法对比,小白也能轻松上手

本文对比了三种大模型本地知识库工具:Mia(腾讯出品,云端存储,稳定免费)、Cheer Studio(专业开发环境,深度模型集成,学习成本高)和AnythingLLM(开源自托管,轻量化,适合高并发场景)。详细介绍了各工具的安装步骤、优缺点及实际使用情况,帮助读者根据需求选择合适的解决方案,实现大模型本地知识管理。

2025-12-10 17:26:21 1190 1

原创 程序员必备:Coze工作流搭建AI视频生成器,历史内容一键搞定

文章介绍如何使用Coze工作流搭建AI智能体,自动化生成历史故事视频。作者详细讲解工作流步骤并提供成品,降低学习门槛。通过AI工具,创作者可高效生产历史类短视频,解决创意和产出速度问题,适合想利用AI提高内容制作效率的人群。

2025-12-09 10:25:14 958

原创 通俗易懂讲解什么是AI智能体,打造你的AI智能体军团

文章深入浅出地解释了AI智能体的概念、能力与结构。智能体区别于传统聊天机器人,能自主思考规划、调用工具完成目标。从能力层面,AI承担更多任务;从结构层面,主要包括大脑(规划与模型)、感知与记忆、行动与工具三大组件。当前市场上如豆包、Cherry Studio等是智能体创建平台,而Manus等更接近真正自主智能体。文章强调应根据实际需求创建智能体,让AI为工作生活带来实际帮助。

2025-12-09 10:23:38 716

原创 大规模RAG系统延迟优化完全指南:从局部陷阱到系统级解决方案的实战技巧

本文深入剖析大规模RAG系统延迟优化的系统性方法,指出盲目追求向量检索速度或大模型推理优化的局限性。提出多层次优化策略:检索阶段采用多级召回与混合检索;上下文管理通过重排序与压缩技术;生成阶段应用高效推理框架;系统级实现多级缓存与智能编排。强调只有跳出局部优化,从整体架构视角改造,才能构建真正低延迟、高吞吐的生产级RAG系统。

2025-12-06 18:55:14 606

原创 GraphRAG:大模型架构升级之路,从搜索数据到推理洞察的质变

GraphRAG通过整合知识图谱与RAG技术,解决了传统RAG在处理复杂关系和全局性问题时的局限。它实现了从"搜索数据"到"推理洞察"的质变,具备多跳推理、全局总结和可解释性三大优势。GraphRAG将非结构化数据转化为结构化认知,通过显式关系链连接孤岛信息,利用分层社区摘要技术统揽全局,并提供了清晰的溯源路径,代表了大模型应用架构的重要发展方向。

2025-12-06 18:54:19 840

原创 大模型Agent落地必知:做减法才是王道

本文强调Agent业务落地的核心是"做减法",而非盲目追求更大的上下文、更全的工具或更复杂的流程。通过精准的信息检索、工具选择、流程优化,以及将长材料卸载到外部系统,可有效避免上下文中毒、干扰等问题。文章提供了六个可落地的"减字"策略和渐进式实施路线,帮助开发者构建更稳定、高效、经济的AI Agent,实现更好的业务留存与复用。

2025-12-05 18:53:57 898

原创 模型Agent架构设计全解析:从单智能体到多智能体工作流,收藏必备!

文章系统介绍大模型智能体架构设计,涵盖单Agent三大核心能力及其优化方法(反思、工具使用、Plan-and-Execute);详细阐述工作流模式(静态顺序、路由、并行等)及适用场景;探讨多智能体系统架构与协作机制;分析低代码与高代码开发选择。为开发者提供从基础到高级的Agent设计系统指导。

2025-12-05 18:52:47 713

原创 超越Prompt工程:掌握LLM上下文设计的五大核心要素

本文阐述LLM作为无状态函数的本质,强调上下文工程对构建高效AI Agent的重要性。文章详细介绍上下文五大核心要素:Prompt与指令、外部数据检索、状态与历史、记忆和输出结构指令,并探讨自定义上下文结构的优势,包括提高信息密度、优化错误处理、增强安全性、提升灵活性和Token效率,帮助开发者显著提升AI Agent性能。

2025-11-29 19:16:51 962

原创 从原理到实战:AI Agent停止策略全解析,避免无限循环与资源浪费

本文深入探讨了AI Agent停止策略的设计思路与实现方法。AI Agent本质是一个大循环,若无合理停止机制,会导致无限循环浪费资源或过早停止无法完成任务。文章分析了六种常用停止策略:硬性限制、任务完成检测、显式停止信号、循环检测、错误累积和用户中断。结合OpenManus和Gemini CLI的源码,详细展示了如何通过terminate工具、状态机管理、声明式输出系统和三层循环检测机制实现有效停止。强调实际应用中需组合多种策略形成多层防护,在"完成任务"与"防止失控"间找到平衡。

2025-11-29 19:15:34 765

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除