#分析各个变量与公司销售价格之间的关系
#导入Python库
import pandas as pd
import seaborn as sns
sns.set(style="darkgrid")
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.rcParams['font.sans-serif'] = ['simhei']
mpl.rcParams['axes.unicode_minus'] = False
#读取数据
df = pd.read_excel('产品价格预测/数据结果/数据清洗结果.xlsx')
print(df.head())
#国内市场铁精粉价格与公司铁精粉销售价格的关系
plt.figure(figsize=(15,9), dpi=800)
sns.lmplot(x='国内市场铁精粉价格',y='公司铁精粉销售价格',data=df, line_kws={'color': 'g'}, height=7, aspect=2)
plt.savefig('产品价格预测/数据结果/国内市场铁精粉价格与公司铁精粉销售价格的关系.png')
plt.show()
#下游钢材产量与公司铁精粉销售价格的关系
plt.figure(figsize=(15,9), dpi=800)
sns.lmplot(x='下游钢材产量',y='公司铁精粉销售价格',data=df, line_kws={'color': 'g'}, height=7, aspect=2)