Domain Knowledge(领域知识)
1. 定义
Domain Knowledge(领域知识) 指在特定专业领域(如医疗、金融、法律、工程等)中积累的系统性专业知识,包括:
-
术语体系(如医学中的“血小板减少症”)
-
行业规则(如金融监管中的Basel III协议)
-
实践方法(如芯片设计中的EDA工具流程)
-
领域特有的数据分布(如医疗影像的CT/MRI差异)
2. 在AI/LLM中的重要性
当技术方案涉及特定领域时,缺乏领域知识会导致:
-
模型失效:如法律合同分析模型误读“Force Majeure”条款
-
数据偏差:用通用语料训练的模型无法理解石油勘探报告中的“孔隙度”
-
评估错误:在医疗诊断中,准确率(Accuracy)不如敏感性(Sensitivity)重要
3. 领域知识的获取方式
来源 | 示例 | 适用阶段 |
---|---|---|
领域专家 | 医生标注医疗实体 | 数据标注/验证 |
行业文献 | IEEE论文中的射频参数规范 | 特征工程 |
领域数据集 | 金融领域的SEC财报数据库 | 模型训练 |
本体论(Ontology) | 生物医学的UMLS知识图谱 | 知识增强 |
4. 与大模型(LLM)的结合方法
(1) 领域适应(Domain Adaptation)
-
技术:在通用模型(如GPT-4)上继续训练领域数据(LoRA/P-tuning)
-
案例:BloombergGPT通过金融新闻/财报微调
(2) 知识注入
-
结构化知识:将行业知识图谱嵌入提示词(Prompt)
检索增强(RAG):实时查询领域数据库(如药品说明书)
(3) 评估优化
-
领域特有指标:
-
法律:条款覆盖度(Clause Coverage)
-
工业:F1-score需区分“安全关键类”(如螺栓松动)
-
5. 典型应用场景
领域 | 关键知识需求 | AI解决方案难点 |
---|---|---|
医疗 | ICD-10编码/药品相互作用 | 误诊风险控制 |
金融 | 巴塞尔协议/衍生品定价模型 | 合规性约束 |
制造业 | 6Sigma标准/设备故障模式 | 小样本学习 |
法律 | 判例法体系/合同条款结构 | 长文本逻辑推理 |
6. 挑战与解决方案
-
挑战1:知识动态更新
-
解法:构建领域知识版本管理(如FDA药品数据库季度更新)
-
-
挑战2:知识冲突
-
解法:基于可信源优先级(如临床指南 > 单篇论文)
-
-
挑战3:知识碎片化
-
解法:构建领域本体论(如SNOMED CT医学术语系统)
-
7. 工具与框架
-
知识图谱:Neo4j, Amazon Neptune
-
领域预训练模型:
-
生物医学:BioBERT, PubMedGPT
-
法律:LexGPT, CaseLawBERT
-
-
评估基准:
-
MedQA(医学)、FinQA(金融)
-