AVL 树

引言

我们知道遍历一遍平衡的二叉搜索树实现复杂度在O(logn)。为了让它更稳定,需要对树进行优化为平衡二叉树,我们可以通过"旋转"操作来实现。

AVL 树既是二叉搜索树,也是平衡二叉树,同时满足这两类二叉树的所有性质,因此是一种平衡二叉搜索树(balanced binary search tree)

节点高度

节点高度指的是节点离最远的叶子节点经过的边的数量,叶子的节点高度为0,空节点的高度为-1

节点平衡因子

节点平衡因子指的是该节点的左子树的高度-有子树的高度,同时规定空节点的平衡因子为0

通过判断该节点的平衡因子超出-1<=node<=1则不是平衡二叉树,需要优化

旋转的判断口诀

偏左树:左左右旋,左右右左旋转

偏右树:右右左旋,右左左右旋转

代码实现右旋

解释:当树为偏左树的时候,我们把失衡节点进行右旋,把child的右节点接入旋转后节点的左节点上

代码实现一个AVL树

TreeNode包含

public class TreeNode {
    int val;
    int height; //节点高度:该节点离叶子节点的最远距离,叶子节点高度为0,空节点高度为-1
    TreeNode left;
    TreeNode right;
    TreeNode(int val) {
        this.val = val;
    }

其中包含计算平衡因子,更新节点的高度,执行旋转操作,插入节点,删除节点

/*通过旋转操作把二叉树转化为平衡二叉树*/
public class VAL_Tree {
    TreeNode root;
    /* 获取平衡因子 */
    int balanceFactor(TreeNode node) {
        // 空节点平衡因子为 0
        if (node == null)
            return 0;
        // 节点平衡因子 = 左子树高度 - 右子树高度
        return height(node.left) - height(node.right);
    }

    //左偏树,节点平衡因子>0直接右旋,系欸但平衡因子<0先左旋再右旋
    /* 获取节点高度 */
    int height(TreeNode node) {
        // 空节点高度为 -1 ,叶节点高度为 0
        return node == null ? -1 : node.height;
    }

    /* 更新节点高度 */
    public void updateHeight(TreeNode node) {
        // 节点高度等于最高子树高度 + 1
        node.height = Math.max(height(node.left), height(node.right)) + 1;
    }

    /* 右旋操作 */
    TreeNode rightRotate(TreeNode node) {
        TreeNode child = node.left;
        TreeNode grandChild = child.right;
        // 以 child 为原点,将 node 向右旋转
        child.right = node;
        node.left = grandChild;
        // 更新节点高度
        updateHeight(node);
        updateHeight(child);
        // 返回旋转后子树的根节点
        return child;
    }

    /* 左旋操作 */
    TreeNode leftRotate(TreeNode node) {
        TreeNode child = node.right;
        TreeNode grandChild = child.left;
        // 以child为远点,将node向左旋转
        child.left = node;
        node.right = grandChild;
        // 更新节点高度
        updateHeight(node);
        updateHeight(child);
        // 返回旋转后子树的根节点
        return child;
    }

    /* 执行旋转操作,使该子树重新恢复平衡 */
    TreeNode rotate(TreeNode node) {
        // 获取节点 node 的平衡因子
        int balanceFactor = balanceFactor(node);
        // 左偏树
        if (balanceFactor > 1) {
            if (balanceFactor(node.left) >= 0) {
                // 右旋
                return rightRotate(node);
            } else {
                // 先左旋后右旋
                node.left = leftRotate(node.left);
                return rightRotate(node);
            }
        }
        // 右偏树
        if (balanceFactor < -1) {
            if (balanceFactor(node.right) <= 0) {
                // 左旋
                return leftRotate(node);
            } else {
                // 先右旋后左旋
                node.right = rightRotate(node.right);
                return leftRotate(node);
            }
        }
        // 平衡树,无须旋转,直接返回
        return node;
    }

    /* 插入节点 */
    void insert( int val) {
        root = insertHelper(root, val);
    }

    /* 递归插入节点(辅助方法) */
    TreeNode insertHelper(TreeNode node, int val) {
        if (node == null)
            return new TreeNode(val);
        /* 1. 查找插入位置并插入节点 */
        if (val < node.val)
            node.left = insertHelper(node.left, val);
        else if (val > node.val)
            node.right = insertHelper(node.right, val);
        else
            return node; // 重复节点不插入,直接返回
        updateHeight(node); // 更新节点高度
        /* 2. 执行旋转操作,使该子树重新恢复平衡 */
        node = rotate(node);
        // 返回子树的根节点
        return node;
    }

    /* 删除节点 */
    void remove(int val) {
        root = removeHelper(root, val);
    }

    /* 递归删除节点(辅助方法) */
    TreeNode removeHelper(TreeNode node, int val) {
        if (node == null)
            return null;
        /* 1. 查找节点并删除 */
        if (val < node.val)
            node.left = removeHelper(node.left, val);
        else if (val > node.val)
            node.right = removeHelper(node.right, val);
        else {
            if (node.left == null || node.right == null) {
                TreeNode child = node.left != null ? node.left : node.right;
                // 子节点数量 = 0 ,直接删除 node 并返回
                if (child == null)
                    return null;
                    // 子节点数量 = 1 ,直接删除 node
                else
                    node = child;
            } else {
                // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
                TreeNode temp = node.right;
                while (temp.left != null) {
                    temp = temp.left;
                }
                node.right = removeHelper(node.right, temp.val);
                node.val = temp.val;
            }
        }
        updateHeight(node); // 更新节点高度
        /* 2. 执行旋转操作,使该子树重新恢复平衡 */
        node = rotate(node);
        // 返回子树的根节点
        return node;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值