引言
我们知道遍历一遍平衡的二叉搜索树实现复杂度在O(logn)。为了让它更稳定,需要对树进行优化为平衡二叉树,我们可以通过"旋转"操作来实现。
AVL 树既是二叉搜索树,也是平衡二叉树,同时满足这两类二叉树的所有性质,因此是一种平衡二叉搜索树(balanced binary search tree)。
节点高度
节点高度指的是节点离最远的叶子节点经过的边的数量,叶子的节点高度为0,空节点的高度为-1
节点平衡因子
节点平衡因子指的是该节点的左子树的高度-有子树的高度,同时规定空节点的平衡因子为0
通过判断该节点的平衡因子超出-1<=node<=1则不是平衡二叉树,需要优化
旋转的判断口诀
偏左树:左左右旋,左右右左旋转
偏右树:右右左旋,右左左右旋转
代码实现右旋
解释:当树为偏左树的时候,我们把失衡节点进行右旋,把child的右节点接入旋转后节点的左节点上
代码实现一个AVL树
TreeNode包含
public class TreeNode {
int val;
int height; //节点高度:该节点离叶子节点的最远距离,叶子节点高度为0,空节点高度为-1
TreeNode left;
TreeNode right;
TreeNode(int val) {
this.val = val;
}
其中包含计算平衡因子,更新节点的高度,执行旋转操作,插入节点,删除节点
/*通过旋转操作把二叉树转化为平衡二叉树*/
public class VAL_Tree {
TreeNode root;
/* 获取平衡因子 */
int balanceFactor(TreeNode node) {
// 空节点平衡因子为 0
if (node == null)
return 0;
// 节点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right);
}
//左偏树,节点平衡因子>0直接右旋,系欸但平衡因子<0先左旋再右旋
/* 获取节点高度 */
int height(TreeNode node) {
// 空节点高度为 -1 ,叶节点高度为 0
return node == null ? -1 : node.height;
}
/* 更新节点高度 */
public void updateHeight(TreeNode node) {
// 节点高度等于最高子树高度 + 1
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
/* 右旋操作 */
TreeNode rightRotate(TreeNode node) {
TreeNode child = node.left;
TreeNode grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新节点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 左旋操作 */
TreeNode leftRotate(TreeNode node) {
TreeNode child = node.right;
TreeNode grandChild = child.left;
// 以child为远点,将node向左旋转
child.left = node;
node.right = grandChild;
// 更新节点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode rotate(TreeNode node) {
// 获取节点 node 的平衡因子
int balanceFactor = balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// 右旋
return rightRotate(node);
} else {
// 先左旋后右旋
node.left = leftRotate(node.left);
return rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// 左旋
return leftRotate(node);
} else {
// 先右旋后左旋
node.right = rightRotate(node.right);
return leftRotate(node);
}
}
// 平衡树,无须旋转,直接返回
return node;
}
/* 插入节点 */
void insert( int val) {
root = insertHelper(root, val);
}
/* 递归插入节点(辅助方法) */
TreeNode insertHelper(TreeNode node, int val) {
if (node == null)
return new TreeNode(val);
/* 1. 查找插入位置并插入节点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // 重复节点不插入,直接返回
updateHeight(node); // 更新节点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
/* 删除节点 */
void remove(int val) {
root = removeHelper(root, val);
}
/* 递归删除节点(辅助方法) */
TreeNode removeHelper(TreeNode node, int val) {
if (node == null)
return null;
/* 1. 查找节点并删除 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else {
if (node.left == null || node.right == null) {
TreeNode child = node.left != null ? node.left : node.right;
// 子节点数量 = 0 ,直接删除 node 并返回
if (child == null)
return null;
// 子节点数量 = 1 ,直接删除 node
else
node = child;
} else {
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
TreeNode temp = node.right;
while (temp.left != null) {
temp = temp.left;
}
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // 更新节点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
}