弄回来K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本划分为 K 个不同的簇,使得每个样本点都属于与其最近的簇。
算法步骤如下:
1. 选择 K 个初始聚类中心。
2. 将每个样本点分配到离其最近的聚类中心所对应的簇。
3. 更新每个簇的聚类中心为该簇所有样本点的平均值。
4. 重复步骤 2 和步骤 3,直到聚类中心不再发生变化或者达到设定的迭代次数。
优点:
1. 简单且易于实现。
2. 可以有效地处理大型数据集。
3. 对于凸形簇的数据效果较好。
缺点:
1. 需要事先确定簇的数量 K,对 K 的选择比较敏感。
2. 对于非凸形簇的数据效果不佳,容易受到初始聚类中心的选择影响。
3. 受到异常值的影响较大。
需要注意的是,K-均值聚类算法的结果取决于初始聚类中心的选择,因此可以多次运行算法并选择表现最好的结果。