噢噢噢哦哦

弄回来K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本划分为 K 个不同的簇,使得每个样本点都属于与其最近的簇。

算法步骤如下:

1. 选择 K 个初始聚类中心。

2. 将每个样本点分配到离其最近的聚类中心所对应的簇。

3. 更新每个簇的聚类中心为该簇所有样本点的平均值。

4. 重复步骤 2 和步骤 3,直到聚类中心不再发生变化或者达到设定的迭代次数。

优点:

1. 简单且易于实现。

2. 可以有效地处理大型数据集。

3. 对于凸形簇的数据效果较好。

缺点:

1. 需要事先确定簇的数量 K,对 K 的选择比较敏感。

2. 对于非凸形簇的数据效果不佳,容易受到初始聚类中心的选择影响。

3. 受到异常值的影响较大。

需要注意的是,K-均值聚类算法的结果取决于初始聚类中心的选择,因此可以多次运行算法并选择表现最好的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值