(1) 设 f ( x ) f(x) f(x) 是 [ a , b ] [a, b] [a,b] 上单调减少的连续函数,证明
∫ a b x f ( x ) d x ≤ a + b 2 ∫ a b f ( x ) d x \int_a^b x f(x) \, dx \leq \frac{a + b}{2} \int_a^b f(x) \, dx ∫abxf(x)dx≤2a+b∫abf(x)dx
【分析】证明定积分的不等式,常用的方法有:
①把定积分转化为变上限(或变下限)的积分函数
,利用微分学中证明函数不等式的方法证;
②利用定积分的性质证
【补充】解法二的 *式 用到了下面的 定理2
(2) 设 f ( x ) f(x) f(x) 是 [ a , b ] [a, b] [a,b] 上单调增加的连续函数。证明
∫ a b x f ( x ) d x ≥ a + b 2 ∫ a b f ( x ) d x . \int_{a}^{b} xf(x) \, dx \geq \frac{a + b}{2} \int_{a}^{b} f(x) \, dx. ∫abxf(x)dx≥2a+b∫abf(x)dx.
【分析】 仿 (1) 两种证法,可证。