一个积分不等式的证明

(1) f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上单调减少的连续函数,证明

∫ a b x f ( x )   d x ≤ a + b 2 ∫ a b f ( x )   d x \int_a^b x f(x) \, dx \leq \frac{a + b}{2} \int_a^b f(x) \, dx abxf(x)dx2a+babf(x)dx

分析】证明定积分的不等式,常用的方法有:

①把定积分转化为变上限(或变下限)的积分函数,利用微分学中证明函数不等式的方法证;

②利用定积分的性质证

【补充】解法二的 *式 用到了下面的 定理2

(2) f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上单调增加的连续函数。证明

∫ a b x f ( x )   d x ≥ a + b 2 ∫ a b f ( x )   d x . \int_{a}^{b} xf(x) \, dx \geq \frac{a + b}{2} \int_{a}^{b} f(x) \, dx. abxf(x)dx2a+babf(x)dx.

分析】 仿 (1) 两种证法,可证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值