- 博客(191)
- 收藏
- 关注
原创 【传知代码】智慧医疗:纹理特征VS卷积特征
今天我们把视线转回到AI应用的另外一个大领域——智慧医疗,来看看目前人工智能在这一领域的最新进展。
2024-11-02 22:37:43 520 1
原创 【传知代码】Robust多模态模型的开发
多模态情感计算数据集:CMU-MOSI: CMU-MOSI数据集是MSA研究中流行的基准数据集。该数据集是YouTube独白的集合,演讲者在其中表达他们对电影等主题的看法。MOSI共有93个视频,跨越89个远距离扬声器,包含2198个主观话语视频片段。这些话语被手动注释为[-3,3]之间的连续意见评分,其中-3/+3表示强烈的消极/积极情绪;CMU-MOSEI: CMU-MOSEI数据集是对MOSI的改进,具有更多的话语数量,样本,扬声器和主题的更大多样性。
2024-11-02 22:28:51 825
原创 【传知代码】VRT: 关于视频修复的模型
随着数字媒体的广泛应用,视频内容的制作和传播变得越来越普遍。然而,由于各种原因,如传输、存储、录制设备等,视频中常常存在各种质量问题,包括模糊、噪音、低分辨率等。这些问题直接影响了用户体验和观看效果,因此视频修复技术变得至关重要。视频修复的定义: 视频修复是一种通过应用计算机视觉和图像处理技术,从低质量的视频帧中重建高质量的视频序列的过程。其目标是改善视频质量,使得观众在观看时能够获得更清晰、更真实的视觉体验。
2024-11-02 22:17:54 324
原创 【传知代码】用于图像识别的判别图正则化技术
地址宽度学习系统 (BLS) 被提出作为深度学习的一种替代方法。BLS 的架构是将输入随机映射到一系列形成特征节点的特征空间中,然后将特征节点的输出广泛扩展形成增强节点,然后可以通过分析确定网络的输出权重。BLS 的最大优势是当出现新的输入数据或神经元节点时,可以增量学习而无需重新训练过程。已经证明 BLS 能够克服基于梯度的深度学习算法中训练大量参数所带来的不足。在论文中,作者们提出了一种新颖的判别图正则化宽度学习系统 (GBLS)。
2024-11-02 22:07:32 699
原创 【传知代码】图像风格迁移技术
图像风格迁移是指将一张图像的内容与另一张图像的风格相融合,生成具有新风格的图像。地址风格迁移这一想法与纹理生成的想法密切相关,在 2015 年开发出神经风格迁移之前,这一想法就已经在图像处理领域有着悠久的历史。但事实证明,与之前经典的计算机视觉技术实现相比,基于深度学习的风格迁移实现得到的结果是无与伦比的,并且还在计算机视觉的创造性应用中引发了惊人的复兴。风格迁移其主要应用场景如在艺术创作场景,将不同艺术风格应用于图像,可以创造出独特的艺术效果,使作品具有新的视觉呈现。
2024-11-02 21:55:53 505
原创 【传知代码】时序预测:多头注意力+宽度学习
Liyun Su, Lang Xiong和Jialing Yang在2024年发表了题为“Multi-Attn BLS: Multi-head attention mechanism with broad learning system for chaotic time series prediction”的论文,发表在《Applied Soft Computing》杂志上(CiteScore14.3,影响因子8.7)。
2024-11-02 21:46:38 495
原创 【传知代码】革新人脸图片智能修复
在人工智能技术的飞速发展中,人脸恢复技术已成为图像处理领域的一项重要应用。Transformer》一文,为我们带来了CodeFormer这一创新技术,它不仅在理论上取得了突破,更在实际应用中展现出了巨大的潜力。CodeFormer的核心在于其独特的码本查找变换器,这一机制的引入,使得人脸恢复不再依赖于大规模的训练数据集,而是通过学习到的离散码本来预测人脸特征,实现了真正意义上的"盲"恢复。这种方法的创新之处在于,它将复杂的人脸恢复问题转化为了一个更为直接的码预测任务,极大地提高了算法的效率和准确性。
2024-11-02 15:00:00 532
原创 【传知代码】融入模糊规则的宽度神经网络结构
今天来给大家讲解一篇发表在中科院一区顶级期刊上《IEEE Transactions on Cybernetics》的有关于目前人工智能计算机视觉新方向(宽度学习)的文章。作者在这篇文章中基于宽度神经网络提出了一种改进的新模型,融入了模糊规则来提高模型对特殊特征的分辨能力。由于模糊规则的复杂性,本博客用了比较多的博客来讲述,如果大家觉得太难,可以直接下载附件代码先跑起来,从代码入手再回来看数学公式会更直接一点。
2024-11-02 08:30:00 653
原创 【传知代码】基于标签相关性的多标签学习
帕金森病是一种使人虚弱的慢性神经系统疾病。传统中医(TCM)是一种诊断帕金森病的新方法,而用于诊断帕金森病的中医数据集是一个多标签数据集。考虑到帕金森病数据集中的症状(标签)之间总是存在相关性,可以通过利用标签相关性来促进多标签学习过程。目前的多标签分类方法主要尝试从标签对或标签链中挖掘相关性。该文章提出了一种简单且高效的多标签分类框架,称为潜在狄利克雷分布多标签(LDAML),该框架旨在通过使用类别标签的主题模型来学习全局相关性。
2024-11-02 07:00:00 537
原创 【传知代码】自动化细胞核分割与特征分析
HoVer-Net是一种精心设计的多分支深度学习网络架构,专为处理复杂的多组织显微图像中的细胞核实例分割与精确分类任务而开发。该网络通过创新的策略,不仅有效解决了细胞核在密集聚集区域难以准确区分的问题,还实现了对每个独立细胞核类型的细致分类。此外,HoVer-Net还引入了专门的上采样分支,这一设计旨在对每个成功分割出的细胞核实例进行进一步的核类型分类。这一分支利用高级语义信息,结合精心设计的分类策略,能够准确判断每个细胞核的所属类型,为医学研究提供了宝贵的细胞水平信息。
2024-10-31 08:00:00 1004 2
原创 【传知代码】知识图谱推理(论文复现)
本研究专注于基于图神经网络(GNN)的知识图谱推理,特别关注了传播路径的应用与优化。在智能问答和推荐系统等领域,知识图谱推理具有关键作用,但传统GNN方法在效率和准确度方面存在局限。为了改进这些问题,本研究引入了创新的自适应传播策略AdaProp,并与传统的Red-GNN方法进行了对比实验。通过实际运行AdaProp和Red-GNN两种方法,并在多个数据集上进行实验验证,结果显示AdaProp在多项性能指标上取得了显著的提升。
2024-10-30 08:30:00 908 1
原创 【传知代码】ChatGPT多模态命名实体识别
我们在两个公共 MNER 数据集上进行了实验:Twitter-2015和 Twitter-2017。这两个数据集都是从Twitter平台上收集的,包含了文本和图像的配对信息,主要用于研究在社交媒体短文本场景下的多模态命名实体识别和情感分析等任务。Twitter-2015: 推文中的文本部分被手动标注了命名实体,并使用BIO2(Beginning- Inside-Outside)标注方案对命名实体进行分类。实体类别包括人物(Person)、组织(Organization)、地点(Location)等。
2024-10-30 08:30:00 781
原创 【传知代码】MSA+抑郁症模型总结
这篇文章,我将介绍第二篇情感计算经典论文模型,他是EMNLP 2021的一篇经典MSA论文中的模型–Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis(MMIM)此外,原创部分为加入了抑郁症数据集以实现抑郁症检测任务,以及SIMS数据集和SIMV2数据集。CMU-MOSI: 它是一个多模态数据集,包括文本、视觉和声学模态。
2024-10-30 07:30:00 677
原创 【传知代码】命名实体识别【论文复现】
实体识别任务(Named Entity Recognition,简称NER)是自然语言处理(NLP)中的一个基本任务,旨在从文本中识别和分类命名实体。命名实体通常包括专有名词,如人名、地名、组织名等。下图展示了一个简单的实体抽取任务,在句子中抽取出来阿里巴巴(组织名)、马云(人名)和杭州(地名)三个实体。本文的工作启发于论文BERT-BiLSTM-CRF Chinese Resume Named Entity RecognitionB(Begin):表示命名实体的开始。
2024-10-30 05:00:00 601
原创 【传知代码】KAN卷积:医学图像分割新前沿
在本文中深入探讨KAN卷积在医学图像分割领域的创新应用,特别是通过引入Tokenized KAN Block(Tok Kan)这一突破性设计,将深度学习中的图像分割技术推向了新的高度。KAN作为一种能够替代传统MLP(多层感知机)的网络结构,以其独特的优势在多个领域展现出强大的潜力。而在医学图像分割这一复杂且关键的领域,KAN卷积更是凭借其高效处理图像特征的能力,成为了研究的热点。
2024-10-29 13:52:16 855 6
原创 【传知代码】水下图像增强
2021年11月,提出一种用于水下图像增强的U型Transformer模型,这是首次在水下图像增强任务中使用Transfomer模型,并且作者同时也发布了这篇文章。它主要针对水下图像增强任务,通过神经网络训练的方式,将模糊的,低分辨率的,对比度低的水下图像,转换成高清的、高分辨率的,对比度高的图像。并且作者也发布了一个大型的水下图像数据集LSUI,为后续在水下图像增强方向提供重要贡献。整体架构:包括基于 CMSFFT 和 SGFMT 的生成器和鉴别器。在生成器中,
2024-10-29 13:23:58 588
原创 【传知代码】短期电力负荷(论文复现)
短期电力负荷技术是对未来几小时或一天内电力系统负荷变化进行预测的技术。该技术通过收集和分析历史负荷数据及相关影响因素,运用时间序列分析、回归分析、神经网络、支持向量机等数学模型和方法,对电力负荷进行精确预测。短期电力负荷预测对于电力系统运行和调度至关重要,有助于电力企业制定合理的发电和输电计划,保障电网的安全稳定运行,降低运行成本,提高供电质量和经济效益。
2024-10-29 12:58:02 488
原创 深入理解数据链路层:以太网帧格式、MAC地址、交换机、MTU及ARP协议详解与ARP欺骗探究
深入理解数据链路层:以太网帧格式、MAC地址、交换机、MTU及ARP协议详解与ARP欺骗探究
2024-10-28 16:49:24 1971 81
原创 TCP协议深度解析:格式、应答机制、序号管理、超时重传与报头标记位
TCP协议的格式,确认应答,序号与确认序号,超时重传,捎带应答,报头标记位
2024-10-21 11:00:34 1652 79
原创 实现TCP Connect的断线重连机制:策略与实践
断线重连机制,它成为确保应用在网络不稳定情况下仍能持续提供服务的关键技术之一。本文旨在深入探讨TCP(传输控制协议)连接中的断线重连机制,解析其工作原理、设计原则、实现策略以及在实际应用中的挑战与解决方案。试着写一个客户端重连的代码,模拟并理解一些客户端行为,比如游戏客户端等。🚀 所属专栏:Linux从入门到进阶。
2024-10-04 08:30:00 404 1
原创 【计算机网络】初识Socket编程,揭秘Socket编程艺术--UDP篇
socket网络编程,socket相关接口,以及网字节序,端口号
2024-09-29 18:36:33 2460 83
原创 基于丹摩智算部署可图(Kolors)
Kolors 是快手 Kolors 团队开发的基于潜在扩散的大规模文本到图像生成模型。Kolors 经过数十亿个文本图像对的训练,在视觉质量、复杂语义准确性以及中英文字符的文本渲染方面比开源和专有模型表现出显着优势。此外,Kolors 支持中英文输入,在理解和生成中文内容方面表现出强大的性能。
2024-09-25 17:13:09 683 5
原创 基于丹摩智算的`YoloV8-训练与测试
链接:https://www.damodel.com/console/overviewDAMODEL(丹摩智算)是专为 AI 打造的智算云,致力于提供丰富的算力资源与基础设施助力 AI 应用的开发、训练、部署。自YOLO(You Only Look Once)模型问世以来,其简洁的设计理念和高效的目标检测能力便广受好评。YOLO系列模型通过一次卷积神经网络的前向传播,即可同时预测图像中多个物体的位置和类别,极大地提高了目标检测的速度和效率。
2024-09-25 16:07:39 650
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人