一.概念
无限调用自身这个函数,每次调用总会改动一个关键变量,直到这个关键变量达到边界的时候,不再调用
二.三要素
第一要素:明确你这个函数想要干什么(确定单层递归的逻辑)。先不管函数里面的代码什么,而是要先明白,你这个函数的功能是什么,要完成什么样的一件事。
第二要素:寻找递归结束条件(确定终止条件)。我们需要找出当参数为啥时,递归结束,之后直接把结果返回,请注意,这个时候我们必须能根据这个参数的值,能够直接知道函数的结果是什么。
第三要素:找出函数的等价关系式(确定递归函数的参数和返回值)。我们要不断缩小参数的范围,缩小之后,我们可以通过一些辅助的变量或者操作,使原函数的结果不变。
三.实例:斐波那契数列
斐波那契数列的是这样一个数列:1、1、2、3、5、8
、13、21、34…,即第一项 f(1) = 1,第二项 f(2) = 1…,第 n 项目为 f(n) = f(n-1) + f(n-2)。求第 n 项的值是多少。
假设 f(n) 的功能是求第 n 项的值,当 n = 1 或者 n = 2 ,我们可以轻易着知道结果 f(1) = f(2) = 1。所以递归结束条件可以为 n <= 2 时,f(n= = 1),代码如下:
int f(int n){
if(n <= 2){
return 1;
}
}
写出结束条件和等价关系,代码如下:
int f(int n){
if(n <= 2){
return 1;
}
return f(n-1) + f(n - 2);
}